MORPHOMETRIC ANALYSIS OF FORAMEN MAGNUM REGION IN ADULT INDIAN POPULATION:

Dr Sanjaykumar Revankar, Dr Shishirkumar C Naik, Dr Prabhjot Kaur Chabbra, Dr Rati Tandon, Mr Devesh Kumar Sharma.

1. Assistant Professor, Department of Anatomy, Father Muller Medical College.

- 2. Associate Professor, Department of Anatomy, JNUIMSRC, Jaipur
- 3. Assistant Professor, Department of Anatomy, JNUIMSRC, Jaipur
- 4. Assistant Professor, Department of Anatomy, JNUIMSRC, Jaipur (Corresponding

Author)

5. Tutor, Department of Anatomy, JNUIMSRC, Jaipur

ABSTRACT

Introduction:

The dimensions of FM have clinical importance because the vital structures that pass through it may suffer compression as in cases of FM achondroplasia and FM brain herniation. In neurosurgical practice, the transcondylar approach is commonly used to access the lesions which are ventral to the brainstem and cervicomedullary junction. It was reported that understanding the bony anatomy of the condylar region is important for this approach. This study puts in an effort to understand the morphometry of the foramen magnum.

Material and Method: The present study was carried out on 40 dry human skulls of unknown age and sex from Kanachur Institute of Medical Sciences, mangalore and continued in Rajasthan in the department of JNUIMSRC, Jaipur, Rajasthan.

All the measurements were taken with the help of digital verniercalipers.

Results:

The foramen magnum was studied for its morphometry and dimension. Foramen magnum with different shapes and size were found.

The mean antero-posterior diameter was 34.36 ± 3.13 mm, the transverse diameter was 28.48 ± 3.97 mm, area was 773.53 ± 154.359 mm², and the FM index was 1.2345 ± 0.180 . The FM shapes were determined as oval (22.5%), egg-shaped (12.5%), round (17.5%), tetragonal (12.5%), pentagonal (12.5%), hexagonal (10.00%), and irregular (12.5%).

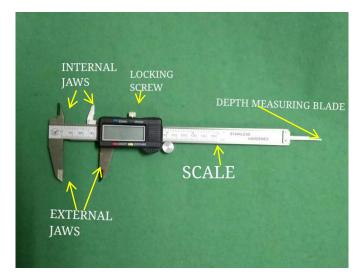
Conclusion: This study will be useful for surgical approach for the Neurosurgeon and Orthopaedic surgeon.

Key Words: Foramen Magnum, Achondroplasia, Arnold Chiari syndrome

INTRODUCTION

The foramen magnum region of the cranial base consists of the foramen magnum and the laterally placed occipital condyles for articulation with the superior facets of the first cervical vertebra.(1)The foramen magnum has gained interest across various disciplines like anthropology, comparative anatomy, evolutionary biology, and clinical sciences.(2) This foramen is outlet through which medulla oblongata and spinal cord along with meninges, vertebral arteries, anterior and posterior spinal arteries, tectorial membrane, alar ligaments, and spinal branch of the accessory nerve.(3)It plays a very significant role as a transition zone between spine and skull being in close proximity to brain and spinal cord.(4) Occipital condyle (OC) is an important part of craniovertebral or craniocervical junction located anterolaterally on either side of the FM.(dried adult skull). This region of the skull is covered by a large volume of soft tissue. Hence, the foramen magnum region is in a relatively well-protected anatomical position.(1)

Variations of the shape of FM have got diagnostic, clinical and radiological importance.(5) Anatomical variance of the foramen magnum may have some impact on certain surgical procedures such as vertebral artery and posterior inferior cerebellar artery aneurysm repairs, foramen magnum meningioma resections, and foramen magnum decompression.(6)

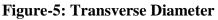

The dimensions of FM have clinical importance because the vital structures that pass through it may suffer compression as in cases of FM achondroplasia and FM brain herniation. In neurosurgical practice, the transcondylar approach is commonly used to access the lesions which are ventral to the brainstem and cervicomedullary junction. It was reported that understanding the bony anatomy of the condylar region is important for this approach.(5)

The foramen magnum region is a unique and complex anatomical region. The occipital condyles (OC) are the main bony structures which obscure the anterolaterally situated lesions of the FM.(7)

MATERIAL AND METHODS

The present study was carried out on 40 dry human skulls of unknown age and sex from Kanachur Institute of Medical Sciences, mangalore and continued in Rajasthan in the department of JNUIMSRC, Jaipur, Rajasthan. The study was conducted from Dec 2014 to April 2020.

All the measurements were taken with the help of digital verniercalipers.


Figure-1: Digital VernierCalipers

Following metric parameters were noted:

- 1. Shapes of Foramen Magnum The different shapes of the foramen magnum were macroscopically noted and classified them as Oval, Egg, Round, Tetragonal, Pentagonal, Hexagonal and Irregular.
- 2. Antero-Posterior Diameter (APD) It is the distance between Basion (midpoint of the anterior margin of the FM) and Opisthion (midpoint of the posterior margin of the FM) Figure-4.

3. Transverse Diameters (TD) - It is the distance between the lateral margins of the FM at the point of greatest lateral curvature Figure-5.

- **4.** Foramen Magnum Index (FMI) It is calculated by dividing the antero-posterior diameter by the transverse diameter (APD/TD).
- 5. Area of FM by Radinsky's formula $A = \frac{1}{4} \times \pi \times W \times L$

 $\pi = Pi$, (22/7 or 3.14)

W = Width (Transverse Diameter)

L = Length (Antero-Posterior Diameter)

RESULTS

The morphological and morphometric observations of the foramen magnum in 40 dried human skulls belonging to Rajasthan population are as follows:

Shapes of FM	No. of Specimens (n=40)	Percentage (%)
Oval	9	22.5
Egg Shape	5	12.5
Round	7	17.5
Tetragonal	5	12.5
Pentagonal	5	12.5
Hexagonal	4	10
Irregular	5	12.5

Table-1: The no. and percentages of various shapes of the foramen magnum

The most common shape was oval and the least common shape was hexagonal.

Parameter	APD (mm)	TD (mm)	
Minimum	27.0	16.09	
Maximum	38.87	38.11	
Mean	34.36	28.48	

Standard Deviation	3.13	3.97
--------------------	------	------

The mean antero-posterior diameter was 34.36mm. The maximum antero-posterior diameter was 38.87mm and minimum antero-posterior diameter was 27.0 mm observed in present study.

The mean transverse diameter was observed to be 28.48mm. The maximum transverse diameter was 38.11mm.andminimum transverse diameter was 16.09mm.

Table-3: Foramen Magnum Index

Parameters	FMI
Minimum	0.970
Maximum	1.921
Range	1.04 - 1.41
Mean	1.2345
Standard Deviation	0.18

In the present study mean value of foramen magnum index was found to be 1.23.withminimum value of 0.970 and maximum being 1.921 with standard deviation of 0.187 for 40 specimens.

Table-4: Frequency and Percentage of Foramen Magnum Index

Foramen Magnum Index (FMI)	Frequency	Percentage (%)
<1.20	18	45
≥1.20	22	55
Total	40	100

When the FMI is >1.2, the foramen is found to be ovoid (Radhika PM et al 2014)

Parameter	Area (mm ²)
Minimum	390.41
maximum	1105.71
Mean	773.536
Standard Deviation	154.359

Table-5: Area of Foramen Magnum

The mean value of area of FM was calculated **773.54 mm²**. The maximum area was 1105.71 mm²and minimum area was **390.41 mm²**calculated.

DISSCUSION

In the present study oval shaped foramen magnum was the commonest shape which is comparable to researchers of ethnic groups Kumar A et al (2015), Piras LAS et al (2016) and PelinIlhan et al (2018). **Table-6**

In the present study oval shaped foramen magnum was the Commonest shape which is comparable to Indian researchers Zaidi SH et al (1998), Radhakrishna et al (2012), Radhika et al (2014), Gopalkrishna et al (2015), Vinutha et al (2016), Devadas et al (2017), Rajkumar et al (2017), Remya k et al (2017), Singh KC et al (2017), Arora S et al (2017), Sampada PK et al (2017) and Mishra AK et al (2018)..

In the present study the Oval shape was observed in 22.5% of dry skull specimens in contrast to highest **64%** reported by Zaidi SH et al (1988) and lowest was reported by Veeramani R et al (2018) i.e. **6%**.

Mean antero-posterior diameter observed in the present study was **34.36 mm** which is comparable to Ethnic researchers of Mursed et al (2013), Suazo GIC et al (2009), Monoel et

al (2009), Lyrtizis et al (2016). They observed the mean value of antero-posterior diameter is 35.6 mm, 35.9 mm, 35.6 mm (in female), 35.7 mm (in male) & 35.1 mm (in female) and 35.05 mm respectively.

Mean transverse diameter was reported **28.48 mm** in the present study which is similar to findings of Ethnic researchers Suazo GIC et al (2009), Monoel et al (2009), Kumar A et al (2015), Lyrtizis et al (2016), Pires LAS et al (2017) that is 29.5 mm, 29.5 mm(in female), 29.4 mm, 29 mm, 29.49 mm (In female), 30.19 mm, 28.62 mm, 29.73 mm respectively.

Mean antero-posterior diameter observed in the present study was **34.36 mm** which is comparable to Indian researchers Kanchan T et al (2013), Radhika PM et al (2014), Sahoo S et al(2015), Rohinidevi M et al (2016), Arora S et al (2017), Sampada PK et al (2017), Veeramani et al (2018), Feridoz J et al(2018). They observed the mean value of antero-posterior diameter is 34.51 mm, 35.30 mm, 35.30 mm, 34.80 mm, 35.42 mm, 34.84 mm, 35.23 mm (in female), 35 mm respectively.

Mean transverse diameter was reported **28.48 mm** in the present study which is similar to findings of Indian researchersRadharkrishna et al (2012), Jain SK et al (2013), Shepur MP et al (2014), Radhika PM et al (2014), Vedanayagam et al (2015), Saini K et al (2015), Sahoo S et al (2015), Riyaz et al (2015), Rohinidevi M et al (2016), Sampada PK et al (2017), Mishra AK et al(2018), Feridoz J et al (2018) that is 28.63 mm, 29.5 mm (in female), 28.50 mm (in male), 29.49 mm , 28.5 mm, 29.39 mm, 28.22 mm, 29.4 mm respectively.

FMI of 1.2 has been reported in Karnataka population (Chethan P et al and Radhika et al) and Orissa population (Sahoo S et al). **Table-10**

In the present study in Rajasthan population FMI was also 1.2.

In the present study (Jaipur region, Rajasthan) Area was calculated as 773.53

mm² which is similar to study of Jaitley M et al (2016) in female (**812.22 mm**²) in Indore region of Madhya Pradesh. **Table-9**

Another study by Rajkumar et al (2017) Udaipur region of Rajasthan have reported area of foramen magnum much lower (**754.32 mm²**).

The following tables are the comparisons of our study:

Table : 6 Shapes of Foramen Magnum

N= no. of skulls studied

Other ethnic groups - Red

Indian population - Black

Present study - Green

ar	Ye	Populatio	Ν	Sex	Shapes of Foramen Magnum							
	n			Oval	Egg Sha pe	Round	Tetra gonal	Pentagon al	Hexa gonal	Irreg ular		
Zaidi SH et al	19 98	Kanpur	20 0	-	64%	-	0.5%	-	7.5%	24.5%	3.5%	
Murshed KA et)	20 03	Turkish	11 0	-	8.1%	6.3 %	21.8%	12.7%	13.6%	17.2%	A:10. 9% B:9.0 9%	
Chethan P et al	20 12	Mangalore	53	-	15%	18.9 %	22.6%	18.9%	3.8%	5.6%	15.1%	
Radhakrishn a et al	20 12	Mangalore	10 0	-	39%	-	28%	19%	14%	-	-	
Radhika et al	20 14	Bangalore	15 0	-	40%	10%	20%	6%	2%	6%	16%	
Rathva et al	20 15	Gujarat	21 0	-	28.75 %	11.9 0%	16.66%	10.47 %	2.38%	4.76%	11.71 %	
Kumar A et al	20 15	USA	36	-	50%	-	20%	6%	-	8%	16%	
Riyaz et al	20 15	Maharasht ra	61	-	31.14 %	-	29.50%	18.03 %	1.63%	8.19%	11.47 %	
Gopalakrishn a et al	20 15	Kerala	55	-	41%	-	25%	14%	-	-	20%	
Sharma S et al	20 15	Tundla	50	-	16.%	16%	22%	12%	8%	8%	18%	
Vinutha et al	20 16	Karnataka	20 0	Mal e	32%	11%	10%	12%	5%	11%	10%	
				Fem ale	35%	5%	13%	12%	5%	12%	8%	
Pires LAS et al	20 16	Brazil	77	-	53.24 %	2.36 %	24.67%	16.88 %	1.29%	1.29%	-	
Rohinidevi et al	20 16	Tamilnadu	35	-	18%	4%	26%	11%	6%	6%	22%	
Fathima et al	20 16	Chennai	53	-	26%	36%	13%	-	4%	21%	-	
Arora S et al	20 17	Bareily	40	-	60%	-	40%	-	-	-	-	
Sampada PK et al	20 17	Karnataka	10 0	-	58%	11%	9%	8%	1%	3%	10%	
Mishra AK et al	20 18	Lucknow	71	-	37.8%	-	30.9%	7.04%	7.04%	11.2%	9.85%	
Veeramani R et al	20 18	Puducherr	10 0	-	6%	12%	15%	11%	3%	21%	32%	

		У					
Present	20	Rajasthan	-				
study	19						

TABLE-7: Antero-posterior and Transverse diameter of Foramen Magnum of Ethnic Groups.

Authors	Year	Population	Ν	Sex	APD±S.D.	TD±S.D.
					(mm)	(mm)
Mursed et al	2003	Turkish	110	-	35.9±3.29	30.4±2.59
Suazo GIC et al	2009	Brazil	211	Male	36.5±2.6	30.6±2.5
				Female	35.6±2.5	29.5±1.9
Monoel et al	2009	Brazil	215	Male	35.7±0.29	30.3±0.20
Lyrtizis et al	2016	Greek	141	-	35.05±2.57	30.19±2.69
Pires LAS et al	2017	Brazil	77	-	34.23±2.54	28.62±2.83
Chovalopoulou	2017	Greece	154	Male	36.69±2.47	32.48±2.70
ME et al						
				Female	34.87±2.41	30.62±2.18
Farid SA et al	2018	Egyptian	75		47.1±03.4	43.6±2.5
Present study	2019	Rajasthan		-		

N= no. of skulls studied

Table-8: Antero-posterior	and	Transverse	diameter	of	Foramen	Magnum	of	Indian
population.								

Authors	Year	Population	Ν	Sex	APD±S.D.	TD±S.D.	
					(mm)	(mm)	
Chethan P et al	2012	Mangalore	53	-	31±2.4	25.2±2.4	
Jain SK et al	2013	Moradabad	68	Male	36.9±0.2	31.5±0.27	
		(North Indian)		Female	32.9±0.3	29.5±0.28	
Kanchan T et al	2013	Mangalore	118	Male	34.51±2.77	33.60±2.63	
				Female	27.36±2.09	26.74±2.36	
Patel R et al	2014	Surat	100	-	42.2	28.29	
Shepur MP et al	2014	Karnataka	150	Male	33.40±2.60	28.50±2.20	
				Female	33.10±2.70	27.30±2.00	
Radhika PM et al	2014	Bangalore	150	-	35.30±2.7	29.49±2.6	
Ganapathy et al	2014	Pondicherry	100		33.9	28.7	
Vedanayagam et	2015	Chennai	420	Male	18.4±0.7	28.2±0.6	
al				Female	17.6±1.0	21.8±0.7	

European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 7, Issue 10, 2020

D ! 1	2015		1		00 4 0 T	
Riyaz et al	2015	Maharashtra	61		33.4±2.5	28.5±2.2
Khanday et al	2016	Chennai	60		36.8	30.9
Jasuja VR et al	2016	Mumbai	100		34.13±2.73	27.82±3.32
Fathima et al	2016	Chennai	53		38.22	35.15
Rohinidevi M et al	2016	Tamilnadu	35		34.80	28.5
Naqshi et al	2017	Shrinagar	25		31.6±0.21	26.5±0.21
Singh et al	2017	Varanasi	50		33.76±2.18	28.09±1.92
Rajkumar et al	2017	Rajasthan	298		33.98±2.75	28.16±2.15
Remya et al	2017	Mangalore	50		33.64±0.228	27.04±0.214
Arora S et al	2017	Bareilly	40		35.42±3.22	27.90±2.58
Raikar et al	2018	Bengaluru	150		34.19±3.57	31.77±3.59
Feridoz J et al	2018	Chennai	50		35±2.8	29.4±2.9
Present study	2019	Rajasthan		-		

N= no. of skulls studied

Table-9: Area of Foramen Magnum

Authors	Year	Population	Ν	Sex	Area
Murshed et al	2003	Turkish	110	Male	931.7±144.29
				Female	795.0±99.32
Shepur MP et al	2014	Karnataka	150	Male	862.0±119
				Female	758.0±109
Sharma S et al	2015	Tundla	50	-	970.57
Kumar A et al	2015	USA	36	Male	876.88±88.83
				Female	776.87±68.51
Khanday et al	2016	Chennai	60	-	576
Singh KC et al	2017	Varanasi	50	-	834.45±75.79
Rajkumar et al	2017	Rajasthan	298	-	754.32±105.16
Remya et al	2017	Mangalore	50	-	714.99±0.844

Present study	2019	Rajasthan	-	

Authors	Year	Population	N	Sex	FMI
Chethan P et al	2012	Mangalore	53	-	1.2±0.1
Radhika et al	2014	Bangalore	150	-	1.20±0.1075
Sahoo S et al	2015	Orissa	150	-	1.2028±0.1075
Dubey A et al	2017	Sagar& Jabalpur	80	Male	1.18±0.11
				Female	1.16±0.07
Present study	2019	Rajasthan		-	

Table – 10: Foramen Magnum Index (FMI)

Conclusion:

The morphological and morphometric analysis of foramen magnum and its variations is important not only to anatomist but also to the neurosurgeons, anesthetist, orthopedicians and radiologists. These variations have become significant because of newer imaging techniques such as computed tomography and magnetic resonance imaging in the field of diagnostic medicine.

This study will also be a help to Forensic medicine experts since ethnic variations as seen and compared with research of other ethnic region population researchers may help in identification of different races

References

1. Madadin M, Menezes RG, Al Saif HS, Abu Alola H, Al Muhanna A, Gullenpet AH, et al. Morphometric evaluation of the foramen magnum for sex determination: A study from Saudi Arabia. J Forensic Leg Med. 2017 Feb;46:66–71.

2. Zdilla MJ, Russell ML, Bliss KN, Mangus KR, Koons AW. The size and shape of the foramen magnum in man. Journal of Craniovertebral Junction & Spine. 2017 Sep;8(3):205.

3. Anatomical Variation in Morphometry and Morphology of the Foramen Magnum and Occipital Condyle in Dried Adult Skulls [Internet]. [cited 2019 Aug 27]. Available from: https://insights.ovid.com/pubmed?pmid=30480625

4. Mittal DSK, Jaleswararao DS. A Morphometric Study on Foramen Magnum in Dried Human Adult Skulls. 7(3):6.

5. Chethan P, Murlimanju B v., Prashanth K u., Prabhu LV, Krishnamurthy A, Somesh M s., et al. Morphological analysis and morphometry of the foramen magnum: an anatomical investigation. Turkish Neurosurgery [Internet]. 2011 [cited 2019 Aug 27]; Available from: http://www.turkishneurosurgery.org.tr/summary_en_doi.php3?doi=10.5137/1019-5149.JTN.4297-11.1

6. Ficke J, Varacallo M. Anatomy, Head and Neck, Foramen Magnum. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019 [cited 2019 Aug 27]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK526041/

7. Avci E, Dagtekin A, Ozturk AH, Kara E, Ozturk NC, Uluc K, et al. Anatomical variations of the foramen magnum, occipital condyle and jugular tubercle. Turkish Neurosurgery [Internet]. 2010 [cited 2019 Aug 27]; Available from: http://www.turkishneurosurgery.org.tr/summary_en_doi.php3?doi=10.5137/1019-5149.JTN.3838-10.1

8. Naderi S, Korman E, Çıtak G, Güvençer M, Arman C, Şenoğlu M, et al. Morphometric analysis of human occipital condyle. Clinical Neurology and Neurosurgery. 2005 Apr 1;107(3):191–9.

9. Saluja S, Das SS, Vasudeva N. Morphometric Analysis of the Occipital Condyle and Its Surgical Importance. J Clin Diagn Res. 2016 Nov;10(11):AC01–4.

10. Kanodia G, Parihar V, Yadav YR, Bhatele PR, Sharma D. Morphometric analysis of posterior fossa and foramen magnum. J Neurosci Rural Pract. 2012;3(3):261–6.

- 10. Scheuer L, Black S. The Juvenile Skeleton. Elsevier, London. 2004; 1-19.
- 11. Romanes GJ. Cunmningham's text book of anatomy. 12th ed. Oxford: Oxford University Press; 1981: p.114.
- 12. Radhakrishna S, Shivarama CH, Ramakrishna A, Bhagya B. Morphometric analysis of foramen magnum for sex determination in South Indian Population. Nite University Journal of Health Science.2012;2(1):20-22.
- 13. Murshed KA, Cicekcibasi AE, and Tuncer I. Morphometric evaluation of the foramen magnum variations in its shape: A study on computerized tomographic images of normal adults. Turk J med Sci. 2003;33(1):301-306.

- 14. Chethan P, Prakash KG, Murlimanju BV, Prashant KU, Prabhu LV, Saralaya VV et al. Morphological analysis and Morphometry of the Foramen Magnum: An Anatomical Investigation. Turkish Neurosurgery. 2012;22(4):416-419.
- 15. Bannister LH, Berry MM, Collins P, Dyson M, et al. Gray's anatomy the anatomical basis of medicine and surgery. 38th ed. Edinburgh: Churchill Livingstone; 1995:567-568.
- 16. Hecht TJ, Horton WA, Reid CS, et al. Growth of the foramen magnum in achondroplasia. American Journal of Medical Genetics. 1989; 32: 528-35.
- 17. Reich JB, Sierra J, Camp W, et al. Magnetic resonance imaging measurements and clinical changes accompanying transtentorial and foramen magnum brain herniation. Annals of Neurology.1993; 33: 159-70.
- 18. Ropper AH. MRI demonstration of the major feature of herniation. J NeurolNeurosurg Psychiatry. 1993; 56:932-935.
- 19. Manoel C, Prado FB, Caria PHF, Groppo FC. Morphometric analysis of the foramen magnum in human skulls of Brazilian individuals: its relation to gender. Braz. J. Morphol. Sci 2009; 26(2): 104-108.
- 20. Tubbs RS, Griessenauer CJ, Loukas M, Shoja MM, Cohen-Gadol AA. Morphometric analysis of the foramen magnum: an anatomic study. Neurosurgery 2010; 66:385-388.
- 21. Zaidi SH, Dayal SS. Variations in the shape of foramen magnum in Indian skulls. AnatAnz. 1988;167(4): 338-40.
- 22. Sumana R, Kirubhanand C, Iddalgave S. Morphometric study of the foramen magnum in adult Human skulls in South Indian Population. Int J Anat Sci. 2014; 5(2):43-45.
- 23. Radhika PM, Shetty S, Prathap KJ, Sheshgiri C, Jyothi KC. Morphometric study of the foramen magnum in adult human skulls in Indian Population. Asian J Med Clin Sci. 2014; 3(1):68-72.
- 24. Rathva A, Shah K, Panchal B, Malukar O. Morphometry and sexual dimorphism of human skull foramen magnum. Int J of Recent Trends in Science and Technology. 2015; 15(2):379-386.
- 25. Kumar A, Dave M, Anwar S. Morphometric evaluation of foramen magnum in dry human skulls. Int J Anat Res. 2015; 3(2):1015-23.
- 26. Riyaz ZH, Siddiqui AA. Morphometric study of foramen magnum in human skulls. Int J of Recent Trends InSci and Technology. 2015; 17(1):28-31.

- 27. Gopalakrishna K, Rathna BS. The craniometric study of foramen magnum of Indian population and variations in its dimensions. Int J of Allied Med Sci and Clin Research. 2015; 3(2):205-211.
- 28. Sharma S, Sharma AK, Modi BS, Arshad M. Morphometric evolution of foramen magnum and variation in its shape and size: A study on Human dried skull. Int J Anat Res. 2015; 3(3):1399-03.
- 29. Vinutha SP, Shubha R. Morphometry and sexual dimorphism in foramen magnum: A study of human skull bones. Int J Anat Res. 2016; 4(3):2593-99.
- 30. Pires LAS, Teixeira AR, Leite TFO, Babinski MA, Chagas CAA. Morphometric aspects of the foramen magnum and the orbit in Brazilian dry skulls. Int J of Med Res and Health Sci. 2016; 5(4):34-42.
- 31. Rohinidevi M, Vimala V. Morphometric analysis of foramen magnum and variations in its shape in dried human adult skulls. Int J Anat Res. 2016; 4(3):2670-73.
- 32. Fathima F, Babu KY. Evaluating the shape of foramen magnum and overlapping of occipital condyle on the foramen. Int J Sci Res. 2016; 5(9):
- Devadas P, Rao MJ, Yesender M, Vinila BHS. Study on the Morphometric analysis of the foramen magnum as an indicator for sex determination. Int J Anat Res. 2017; 5(3.1):4163-67.
- Rajkumar, Kattimuthu P, Manik P, Singh V. Morphometric analysis of foramen magnum of dry human skulls in north indian population. Int J Anat Res. 2017; 5(1):3480-84.
- 35. Remya K, Rathnakar P, Swathi. Evaluation of foramen magnum in dry human skulls of Dakshina Kannada District. 2017; 5(4.1):4488-91.
- 36. Singh KC, Rai G, Rai R. Morphological variations of the foramen magnum in adult human dry skull in Eastern UP (India) Population. Int J Med Res. 2017; 3(2):205-08.
- 37. Arora S, Sharma SK, Siddiqui SW, Khatri S. Morphometry and surgical importance of foramen magnum. Int J Anat Res. 2017; 5(1):3464-69.
- 38. Sampada PK, Poornima B, Mallikarjun M, Sakri SB. Morphometric and Morphological study of foramen magnum in dried human skull bones. Int J Anat Res. 2017; 5(2.1):3682-86.
- 39. Ilhan P, Kayhan B, Erturk M, Sengul G. Morphological analysis of occipital condyles and foramen magnum as a guide for Lateral Surgical Approaches. MojAnat and Physiol. 2017; 3(6).

- 40. Raikar NA, Meundi MA, David CM, Rao MD, Jogigowda SC. Sexual dimorphism in foramen magnum dimensions in the South Indian Population: A digital submentovertex radiographic study. J Forensic Dent Sci. 2016; 8:180-7.
- 41. Mishra AK, Pandey SB, Yadav CK, Haque M, Chandra N. Morphometric study of foramen magnum of skull in population of Uttar Pradesh. Int J Anat Res. 2018; 6(2.2):5186-90.
- 42. Veeramani R, Manjunath KY, Amirthalingam U. Morphological and Morphometric study of variations in the shape and size of the foramen magnum of human skulls. Int J of Anat, Radiology and Surgery. 2018; 7(2):1-8.
- 43. Suazo GIC, Russo PP, Zavando MDA, Smith RL. Sexual Dimorphism in the foramen magnum dimensions. Int J Morphol.2009; 27(1):21-23.
- 44. Gruber P, Henneberg M, Boni t, Ruhli FJ. Variability of human foramen magnum size. The Anatomical Recrd. 2009; 292:1713-1719.
- 45. Lyrtzis C, Piagkou M, Gkioka A, Anastasopoulos N, Apostolidis S, Natsis K. Foramen Magnum, Occipital Condyles, and Hypoglossal canals Morphometry: Anatomical study with clinical implications. Folia Morphol. 2016; 76(3):446-457.
- 46. Chovalopoulou ME, Bertsatos A. Estimating sex of modern Greeks based on the foramen magnum region. J of Anthropology. 2017; 1-7.
- 47. Farid SA, Fattah IOA. Morphometric study of human adult occipital condyle, hypoglossal canal and foramen magnum in dry skull of modern Egyptians. Int J of Clinical and Developmental Anatomy. 2018; 4(1):19-26.
- 48. Mahajan D, Agnihotri G, Sheth A, Brar R. An anatomical perspective of human occipital condyles and foramen magnum with neurosurgical correlates. Int J of Experimental and Clinical Anatomy.2011; 6(7):29-33
- 49. Jain SK, Choudhary AK, Mishra P, Morphometric evaluation of foramen magnum for sex determination in a documented North Indian sample. Journal of Evolution of Medical and Dental Sciences. 2013; 2(42):8093-8098.
- 50. Kanchan T, Gupta A, Krishan K. Craniometric analysis of foramen magnum for estimation of sex. Int J of Med and Health Sci. 2013; 7(7):378-380.
- 51. Patel R, Mehta CD. Morphometric study of foramen magnum at the base of human skull in South Gujarat. IOSR J of Dental and Med Sci. 2014; 13(6): 23-25.
- 52. Shepur MP, Magi M, Nanjundappa B, Havaldar PP, Gogi P, Saheb SH. Morphometric

analysis of foramen magnum. Int J Anat Res. 2014; 2(1): 249-255.

- 53. Ganapathy A, Sadeesh T, Rao S. Morphometric analysis of foramen magnum in adult human skulls and CT images. Int J Cur Res. 2014; 6(20):11-15.
- 54. Vedanayagam T, Sathyamurthy V. Sex determination from foramen magnum measurements-A regional study in Chennai, Tamil Nadu. Indian J of Forensic and Community Medicine. 2015; 2(3):179-181.
- 55. Sahoo S, Giri SK, Panda SK, Panda P, Sahu MC, Mohapatra C. Morphometric analysis of the foramen magnum and occipital condyles. Int J Pharm Sci Rev Res. 2015; 33(2):198-204.
- 56. Khanday S, Chakaravarthy P. Morphology and Morphometry of foramen magnum. Int J of Current Res. 2016; 8(3):27765-27767.
- 57. Jasuja VR, Kulkarni PG, Borate SM, Punyani SR. A Morphometric study of occipital condyles and foramen magnum in adult skull base in Western Maharashtra rigion of India. Int J Anat Res. 2016; 4(1):1846-50.
- 58. Naqshi BF, Shahdad S, Kawoosa N, Shah AB. Morphological and Morphometric study of foramen magnum in dry human skulls of Kashmir. Global J for Res Analysis. 2017; 6(8):1-3.
- 59. Ashwini C, Khona P. A Morphometrical study of foramen magnum in adult human dried skull of South Indian Population.Int J Anat Res. 2018; 6(1.1): 4831-35.
- 60. Feridoz J, Babu Y. Morphometric analysis of foramen magnum. Int J of Scientific Development and Research. 2018; 3(4):302-305.
- 61. Jaitley M, Phulambrikar T, Kode M, Gupta A, Singh SK. Foramen Magnum as a tool for sexual dimorphism: A cone beam computed tomography study. Indian J of Dental Res.2016; 27:458-62.
- 62. Singh G, Talwar I. Morphometric analysis of foramen magnum in human skull for sex determination. Hum Bio Rev. 2013; 2(1): 29-41.
- 63. Dubey A, Verma SK. The anatomy occipital condyles and foramen magnum and their surgical importance: A Morphometric study.Int J Anat Res. 2017; 5(2.1): 3780-83.