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Abstract 

This paper describes the stiffness characteristics of a 3-PUU translational parallel kinematic 

machine (PKM). An alternative method of generating the stiffness matrix is used when 

considering actuators and limitations, as well as the compliances of both actuators and legs. 

Extreme stiffness values and their design consequences are used to evaluate rigidity 

manipulator performance. 

Using the stiffness of a 3-PUU PKM in the design of its architecture is a good idea. Using an 

eigenscrew decomposition of the PKM's stiffness matrix, it is possible to identify the PKM's 

stiffness centre and the PKM's compliant axis, which provides a physical interpretation of 

PKM stiffness. 

Stiffness; workspace; parallel manipulator mechanics and design 

Introduction 

Because of all the various applications, parallel manipulators have become more popular in 

recent years [1]. Parallel manipulators with fewer than six degrees of freedom (DOF) have been 

extensively employed in many applications due to the inherent advantages of parallel 

mechanisms while also giving additional benefits in terms of manufacturing and operating 

expenses. Sturdiness is critical for parallel mechanisms since they increase cutting speeds and 

enhance the accuracy of the end-effector. Because the stiffness of a parallel kinematic machine 

has to be measured and assessed as early in the design process as feasible (PKM). Prior to the 3-

PUU mechanism, the concept of translational parallelism was raised and researched [5–6]. There 

has been minimal investigation on the entire stiffness of the system, despite the fact that 

actuators and legs have their own compliance. PKM in motion is examined to see how the 

structure's dynamics are affected by a 3-PUU PKM stiffness model developed for this study. 

Section 1.1 discusses stiffness modelling. 

This connection between force and deflection is linear when elastic devices support a rigid body 

[7], as defined by a 6x6 positive semidefinite matrix that is symmetrical. End-vector effector of 

compliant deformations is connected to a static external wrench via a 6x6 stiffness matrix to 

identify parallel manipulators. Six-leg parallel 6-DOF manipulators with pliability of each 

compliant portion may be utilised to construct a basic stiffness model. It takes a long time to 

create stiffness maps for manipulators with just two degrees of freedom. The stiffness of a 

tripod-based PKM may be mimicked via virtual labour [10]. In [11], a parallel manipulator 

model for CaPaMan was created by using the kinematic and static features of all three legs. 
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Present methodologies are inadequate to explain the stiffness of manipulators with fewer degrees 

of freedom of motion. Prior to this work, methods to construct a parallel manipulator's stiffness 

matrix using an overall Jacobian were suggested [12]. The 6 x 6 matrix of a translational PKM 

may summarise the stiffness and restrictions of the actuations of a less-DOF parallel 

manipulator, according to this work. 

Stiffness assessment, 

The design of the workspace and the direction in which wrenches are applied determine the 

stiffness of a PKM for a particular set of anipulator parameters. When assessing whether or not 

the design complies with stiffness criteria or even performs an ideal design, a model of the 

object's stiffness must be constructed and predicted its have a deeper understanding of a PKM's 

stiffness behaviour, it must be tested in many configurations. For measuring stiffness, many 

performance indicators have been established and used in the literatures. The stiffness matrix 

terms [8,10] may be used to get an idea of how stiff something is. It is also possible to evaluate 

stiffness by looking at the stiffness matrix's eigenvalue for the eigenvector in question [8,13]. 

According to the findings of researchers, a rigidity limit exists for stiffness matrices with low and 

high Eigenvalues. [14] The largest to smallest eigenvalue ratio of the stiffness matrix may be 

used to forecast stiffness values. There are several ways to evaluate the stiffness matrix, 

including its determinant, which is the product of its eigenvalues [5,11]. A three-dof spherical 

parallel manipulator's stiffness may be evaluated using a stiffness matrix divided by the 

workspace volume [15]. 

It is unable to effectively describe the stiffness attribute in any direction because of off-diagonal 

components in the general form of stiffness matrix. Determinant or trace values are very high 

even though the manipulator's low stiffness prevents it from being used in applications since or 

trace cannot differentiate the difference. 

However, even if the condition number indicates that the stiffness matrix has been improperly 

prepared for consistent manipulation, a machine tool must have a minimum stiffness level across 

its workspace. As a result, in this article, performance is measured using the lowest and 

maximum stiffness values, as well as their variations. 

The stiffness model of a PKM is essential for understanding the PKM's spatial compliance. It is 

possible to provide a physical explanation for spatial elastic behaviour if the stiffness matrix is 

divided into its component eigenscrews. If the stiffness centre and compliant axis are present, 

this physical interpretation is plausible [18]. RCC (remote centre of compliance) idea may be 

extended to include off-diagonal blocks diagonalized at the centre of stiffness in stiffness matrix 

definition. This decoupling of rotation and translation is still conceivable if the normal form for 

generic stiffness matrices is not diagonal. It is used in robotics as a torsional and linear spring in 

the same device. When applied to the axis of a compliant system, both linear and rotational 

deformation are parallel. Even in a strict system, this is the case. 

Section 2 introduces the 3-PUU PKM, whereas Section 3 explains a new method for calculating 

the stiffness matrix. Section 4 employs shock indices to forecast the influence of design 
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components on the structural integrity of a product. Section 5 concludes the discussion with a 

few last observations. 

Kinematic description 

Figure 1 depicts the CAD model of a 3-PUU PKM, whereas Figure 2 shows the schematic 

design. A movable platform, a stationary base, and three arms with the same kinematic 

framework make up the manipulator. Lead screw linear actuators are used to drive (U) joints 

sequentially. Because each U joint is made up of two revolute (R) joints that meet at an angle, 

each limb may move like a Chain of motion PRRRR. Only translational movements can be 

achieved using a 3-PUU mechanism. 

 

Fig. 2. Schematic representation of a 3-PUU PKM. 

For each chain, the initial and last revolute joints are parallel, and the two intermediate joint axes 

are also parallel. Figure 2 shows the fixed Cartesian reference frame (Ox,y,z) we'll be using for 

this inquiry. The permanent base of the platform and the movable frame of the mobile platform. 

Triangle DB1A2B3 and triangle DB1B2B3 intersecting The x and u axes should be aligned to 

make things easy. OA1 is used to designate the x-axis. Oai and OAi are the vectors' angles to 

each other PBi "I 1; 2; 3" is a novel way of putting it. Angle h, therefore, is the angle formed by 

a moving platform and a stationary base. On one of its three tracks, AiM crosses across. The x–y 

plane has three points where circles of the same radius intersect: A1, A2, and A3, as well as M, 

where a third circle of the same radius crosses. Circles B1, B2, and B3 are the intersection 

locations of the three legs CiBi with lengths l in the U–V plane. Its circumference is b Angle an 

is defined as the angle of motion of the actuators from the base to the rails AiM. Perspective. To 

guarantee that the manipulator has a symmetric workspace, DA1A2A3 and DB1B2B3 must be 

used. Equilateral triangles are being distributed. Leg CiBi represents the actuator's linear 

displacement and its rotation. An indicator of the unit vector should be shown on the AiM rail. 

Make sure ai gets a quarter of OAi, too One-eighth PBI is an alternative.For every time, there is 

a four-fold multiplier. Vector-loop analysis may be used to address both forward and backward 

motion issues. Closed-form solutions may exist. Solutions to inverted kinematics may be 

summed up as follows: As a result of this data, the 3-PUU PKM's workspace is now revealed. 
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Stiffness matrix generation 

Jacobian matrix derivation 

The Jacobian matrix of a parallel manipulator may be derived using reciprocal screw theory [12]. 

The mobile platform's twist may be described as T 14 12tT xTT in Plu cker axis coordinates, 

with t and x designating the vectors for linear and angular velocities, respectively. 

 

A unit screw (in Plu cker coordinates) is connected with each of the joints of the leg in which the 

intensity is equal to or greater than _hj;i, where I is 1, 2, or 3. 

 

The following equations are used to determine sj;i, For the 3-PUU mechanism's joint axis, the 

translational PKM has to fulfil criteria s3;14, First, a ray coordinate of one screwtc;i, which is 

reciprocal to all other screwstc;i of the ith joint. Secondly, a ray coordinate A 1-system is a screw 

with an infinite pitch that is oriented perpendicular to the limb. The articulation of a U-joint is 

divided into two axes: 

 

Eq. (2) may be constructed into a matrix form by taking the product of both sides of the equation 

with tc;i. 

 

is referred to as the Jacobian principle of constraint. The mobile platform's 3-DOF mobility is 

restricted by the combination of the limitations in each row of Jc. The unique solution to Eq. (4) 

if ri is: x 14 0. This system contains the, Screwtc;i had already figured it out. All the passive joint 

screws of the extra basis screwta;i are reciprocal zero pitch screw may be distinguished along the 

path of the two U joints, i.e. 
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it's known as the Jacobian of motions. Ja's units demonstrate following talks. As a result, in order 

to construct a stiffness matrix, the Jacobian matrix units must be homogenised. Invariant to the 

length unit selected, the performance index The dimensionally homogenous Jc is 

dimensionless.It is possible to attain the Jacobian of actuations 

 

Stiffness modelling is discussed in section  

Three constraint couples are exerted on the movable platform by the wrench system that is the 

reciprocal screw system with infinite pitch and by the reciprocal screw system with zero pitch. 

Three forces are applied to the movable platform via the screw system of actuation. the limbs. In 

other words, each leg is subjected to one and a half times its own weight in a certain direction. 

Considering the premise Infinite rigidity of the U joints and mobile platform and the compliance 

of actuators and legs are the only constraints may be deduced in this manner. 

Control of actuators affects compliance  

To move a lead screw, the torque must be transmitted between the ith nut and the linear 

displacement may be estimated as a function of time 

 

Assume that lc is the friction coefficient of the ith actuator, si is its torsional stiffness, and ds is 

its pitch diameter. According to Eq. (12), one can calculate the linear driving device's 

compliance: 

 

As a result, the projection of compliance in the corresponding leg's direction may be deduced as 

a function of the it actuator. 

 

Legs-based compliance 

Transverse compliance is equal to the ith leg's Ckl;i, whereas longitudinal compliance is the 

same. There is an elastic deformation of the ith leg because of a constraint force Fki and a 
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constraint couple Mri perpendicular to the limb's universal joint. This means that the elastic 

deformations may be represented as follows: 

 

There are two legs, each with a length of l and a cross-sectional area of A, and each leg has a 

modulus of elasticity E and G, respectively. Eqs. (15) and (16) may then be used to generate Ckl 

I and Ck h;i. 

The stiffness model 

Constraints' and actuators' stiffnesses may be calculated using the inverse connection between 

stiffness and compliance 

 

Consider that three linear springs are used to link the movable platform to the stationary base, 

and three rotating springs are used as well, as shown in Fig.  

Stiffness matrix determination 

Suppose an external wrench w 14 12fT is applied to the movable platform in the form of the Plu 

cker ray coordinate, where force is denoted by the notation F 14 12fx, torque is denoted by the 

notation M 12mx, and so on. The response forces/torques of the actuators and restraints, 

respectively, may be represented by the sa and sc symbols. Reaction forces/torques exerted by 

actuators and restraints, i.e., the external wrench is balanced in the absence of gravity 

 

the matrices are va 14 diag1–2Ka;1; Ka;2–3 and vc, respectively, which represent the 

displacements of actuations and restrictions, respectively, in the form of Dqa and Dqc. It is also 

possible to calculate the displacements of translation and rotation of the movable platform with 

respect to the three reference axes by using the formula: dx 14 12Dx Dy DzT ; dh 14 12Dhx Dhy 

DhzT. Then, by ignoring the gravitational impact, the formation of virtual labour is possible. 
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A careful analysis of Eqs. (18)–(20) at the same time, leads to the expression of 

 

in where K 14 JTvJ is defined as the 6-by-6 overall stiffness matrix of a 3-PUU PKM, 

encompassing the influence of actuations and restrictions, with the 6-by-6 diagonal matrix v 14 

diag12va vc. Where 

Evaluation of the 3-PUU PKM's stiffness 

As can be seen in Table 1, the 3-PUU PKM's design parameters aim to strike a balance between 

the overall workspace's global dexterity index and the space utility ratio index, which measures 

the workspace's volume in relation to the robot's physical size [6]. In addition, the U joints' cone 

angle restrictions are 20, and the P joints' motion range limits are D0.1 m. The manipulator's 

accessible workspace is constructed as illustrated in Fig. 4 using a numerical search approach 

described in [19]. Moreover, Table 2 details the design's physical properties (3-PUU PKM). Di 

14 0 -i 14 1; 2; 3 is the home position of the mobile platform in the case of mid-stroke linear 

actuators, in which the stiffness matrix is derived as follows: 
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Words N/m are used in this context to describe the phrases K0 11g; K113g; and N/rad to 

describe the phrases N/mg; K015g; and N/mg. PKM's movable platform may be utilised to 

calculate the DX's compliant displacement in light of Equation (21). As seen in FIG. 6, the 

platform moves at a constant speed while being exposed to a static external force of 20 N. It was 

found that the linear compliant displacement along the x-axis was 1.4 mm, as predicted. In 

addition to this, the y-axis rotation is the most rotary-compliant displacement of them all. 

Stiffness assessment 

PKM manipulation requires a stiffer workspace than a defined threshold. An overall perspective 

of the workspace's stiffness levels may be gained via deriving the lowest and greatest stiffness 

eigenvalues using classical eigenvalue decomposition. The total stiffness of the PKM workspace 

was measured numerically. Volume V division in cartesian coordinates as well as an evaluation 

of individual pieces to decide whether or not they belong in the workspace are critical 

components of this method. The size of the samples required depends on the level of precision. 

Mechanical joint motion restrictions and inverse kinematic solutions are used for verification. 

Decomposition of a stiffness matrix yields the parts that lie inside a certain workspace's 

boundaries. For each sample, the lowest and greatest stiffness values are compared to determine 

the workspace's minimum and maximum stiffness values. It has been employed because it is 

simple to implement in a computer programme. [20] A Gough-type parallel manipulator may 

benefit from a computer round-off analysis technique. It may also be used to build and compare 

two 3-DOF PKMs [3]. 

Figure 7 illustrates the stiffness levels in the z = 0.242 m (home position height) planes. There 

are three P joints with 120 degree x–y rotations in the viewing workspace, as shown. In addition, 

a manipulator's minimum stiffness and maximum stiffness increase as it approaches the 

workspace border. When employed outside of the attainable workspace, the PKM has poor 

stiffness qualities. It makes sense to keep it there. This subworkspace's definition is determined 

by the PKM tasks and performance metrics. Workspace is divided into a cubic shape with a 0.01 

m edge length, with the platform's home location specified as the centre. " Stiffness is examined 

by changing the kinematic parameters. As little as 0.002 millimetres in diameter, the stiffness of 

this workspace may be determined. In Figs. 8a–d, the 3-PUU PKM's stiffness varies somewhat, 

which is consistent with the 3-PUU PKM's design parameters. 
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Fig. 8. Global stiffness index versus design parameters of (a) actuators layout angle, (b) twist 

angle, (c) mobile platform size, and (d) the leg length. 

 

The manipulator's rigidity must be taken into account. Between 0 and 90 degrees, the minimum 

stiffness seems to peak between 30 and 35 degrees, while the maximum stiffness appears to 

reach its lowest value around 60 degrees. Minimum and maximum stiffness values are lowest for 

twist angles of h 14 0 when the moveable platform size grows from 0.25 metres to 0.50 metres, 

while maximum stiffness is greatest for these twist angles. These twist angles have the lowest 

minimum and maximum stiffness values. To see the stiffness of the manipulator at various 

positions, look at Figure 8. This figure shows that the maximum minimum stiffness criteria for 

dexterity and workspace performance are not reached, as shown. Depending on the activities to 

be done, stiffness indices may be used to analyse how effectively the PKM's architectural 

optimization is performing for machine tool applications. 

Stiffness interpretation via eigenscrew decomposition 

To find out how stiff the structure is, we'll perform an eigenscrew matrix decomposition. Twists 

are represented in the axis coordinate system, whereas wrenches are represented in the ray 

coordinate system. If you want to get relevant answers from the stiffness matrix eigenscrew 

issue, you must formulate it consistently. Some situations need the use of ray or axis screw-based 

coordinates. It also assures that the findings are not reliant on the coordinate frame and that the 

units are maintained as they should be. The findings won't hold up without this step, therefore it's 

of no real consequence. The bD matrix may be used to transition between two distinct types of 

coordinate systems. 
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In terms of importance, the number 2 is paramount. Therefore, the spring constant k, the helical 

joint pitch p, and the geometrical connection parameters n and r determine the spring 

characteristics of each screw spring. No question, the first two springs are perpendicular to one 

another and in the same plane as one another, but the final four are perpendicular to one another 

and on the "z-plane. " The centre of stiffness, where rotations and translations may be decoupled 

to the greatest extent possible, is represented by six springs connected at a single point. 

Compliant axis determination 

[18] In order to produce a compliant axis, the linear deformation must be parallel to the 

rotational deformation surrounding it. Only a compliant axis can address the eigenscrew issue. 

There must be two collinear screws with equal stiffness and opposing signs in order for a 

compliant shaft to operate. The two collinear eigenscrews define the compliant axis. 

Conclusions 

The reciprocal screw theory, which accounts for the effects of actuation and restriction on a 

Jacobian overall, is used in its construction. Additionally, a model of the manipulator's stiffness 

is built that incorporates both actuators and legs. PKM stiffness may be evaluated using the 

lowest and greatest eigenvalues of the stiffness matrix in a cubic form useable workspace. This 

document includes design issues that impact the stiffness of a building's 3-PUU PKM. 

Deconstructing the stiffness matrix using eigenscrews is the best way to understand the PKM's 

compliant behaviour. Stiffness may be measured by suspending a body from a series of screw 

springs in a certain way. Since the PKM's rigidity centre and compliant axis always point in the 

same direction, it has a larger z-axis stiffness. We have made great progress in our knowledge of 

3-PUU PKM stiffness modelling, the assessment of PKM stiffness using architectural 

characteristics, and a physical interpretation of PKM stiffness. Further parallel manipulators may 

be simulated using the analytical methodologies described here. The stiffness qualities of the 3-

PUU PKM may be used as a starting point for architectural design. An experiment is needed to 

verify the findings of the stiffness investigation once the PKM is built and produced. 
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