OSCILLATION CRITERIA OF THIRD ORDER NON-LINEAR DAMPED DELAY DIFFERENCE EQUATIONS

S. Revathy ${ }^{1}$ and R. Kodeeswaran ${ }^{2}$
${ }^{1}$ Department of Mathematics, Selvam College of Technology, Namakkal, Tamilnadu, India.
${ }^{2}$ Department of Mathematics, Kandaswami Kandar's College, P.velur, Namakkal, Tamilnadu, India.
${ }^{1}$ E-Mail Address : revathymax86@gmail.com, ${ }^{2}$ E-mail Address: srkodeesh@gmail.com.

Abstract

In this paper, we consider the third order non-linear difference equations of the form $\Delta\left(c_{n} \Delta\left(d_{n}\left(\Delta x_{n}\right)^{\delta}\right)\right)+p_{n}\left(\Delta x_{n}\right)^{\delta}+q_{n} g\left(x_{n-\lambda}\right)=0, n \geq n_{0}>0$. We establish new oscillation results for the third order equation by using Riccati transformation technique. Examples are given to illustrate the importance of the results.

KEYWORDS: Riccati transformation, Delay Difference Equation, Oscillation, Third order. AMS Subject Classification: 39A10

Introduction

We consider non-linear third order difference equations of the form

$$
\Delta\left(c_{n} \Delta\left(d_{n}\left(\Delta x_{n}\right)^{\delta}\right)\right)+p_{n}\left(\Delta x_{n}\right)^{\delta}+q_{n} g\left(x_{n-\lambda}\right)=0, \quad n \geq n_{0}>0
$$

where $\delta \geq 1$ is the ratio of positive odd integers.
(i) $\left\{c_{n}\right\},\left\{d_{n}\right\},\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are positive real sequences.
(ii) $\left\{g_{n}\right\}_{\text {is a real sequence such that }} u g(u)>0$ for $u \neq 0$ and $g(u) / u^{\beta} \geq k>0$ where β is ratio of positive integers.
(iii) $\quad \lambda$ is a positive integer.

By a solution of equation (1.1) we mean a real sequence $\left\{x_{n}\right\}$ defined for $n \geq n_{0}-\lambda$ and satisfies the equation (1.1) for all $n \geq n_{0}$. A solution $\left\{x_{n}\right\}$ of equation (1.1) is said to be oscillatory if is neither eventually positive nor eventually negative, and otherwise nonoscillatory. A solution $\left\{x_{n}\right\}$ of equation (1.1) is called non-oscillatory if all its solutions are non-oscillatory.

There are many papers dealing with oscillatory and asymptotic behavior of solutions of several classes of third order functional difference equations, see [3]-[8], [10]- [13] and the reference cited therein. $\operatorname{In}[14]$ the authors considered the following the second order
difference equation

$$
\begin{equation*}
\Delta\left(c_{n} \Delta z_{n}\right)+\frac{p_{n}}{q_{n+1}} z_{n+1}=0 \tag{1.2}
\end{equation*}
$$

is non- oscillatory.
Very recently, in [6] the authors discussed the oscillatory and asymptotic behavior of solution of the equation

$$
\begin{equation*}
\Delta\left(a_{n} \Delta\left(b_{n}\left(\Delta y_{n}\right)^{\alpha}\right)\right)+p_{n}\left(\Delta y_{n+1}\right)^{\alpha}+q_{n} f\left(y_{n-l}\right)=0, n \geq n_{0} \tag{1.3}
\end{equation*}
$$

Equation (1.3), the authors assumed the coefficient sequence of the damping term is positive.
In section 2, we will present some lemmas which are useful in establish our main results. In section 3, we will state and prove the main results and give examples illustrate them.

2. Auxiliary Results

We define,

$$
L_{0} x_{n}=x_{n}, \quad L_{1} x_{n}=d_{n}\left(\Delta\left(L_{0} x_{n}\right)\right)^{\delta}, \quad L_{2} x_{n}=c_{n} \Delta\left(L_{1} x_{n}\right), \quad L_{3} x_{n}=\Delta\left(L_{2} x_{n}\right) \text { on I. }
$$

Hence (1.1) can be written as

$$
L_{3} x_{n}+\left(\frac{p_{n}}{d_{n}}\right) L_{1} x_{n}+q_{n} g\left(x_{n-\lambda}\right)=0 .
$$

Remark 2.1

We denote the following notations:

$$
\begin{aligned}
& \mathrm{D}_{1}(n)=\sum_{s=n_{1}}^{n-1} \frac{1}{\left(d_{s}\right)^{1 / \delta}}, \quad D_{2}(n)=\sum_{s=n_{1}}^{n-1} \frac{1}{\left(c_{s}\right)}, \quad \text { and } \quad D^{*}(n)=\sum_{s=n_{1}}^{n-1}\left[\frac{D_{2}(s)}{d_{s}}\right]^{1 / \delta} \\
& \text { for } n_{0} \leq n_{1} \leq n<\infty,
\end{aligned}
$$

We assume that $\lim _{n \rightarrow \infty} D_{1}(n)=\infty \quad$ as $n \rightarrow \infty$
and $\lim _{n \rightarrow \infty} D_{2}(n)=\infty$ as $n \rightarrow \infty$
Lemma 2.2Suppose that (1.2) is non-oscillatory. If $\left\{x_{n}\right\}$ is a non-oscillatory solution of (1.1) on $\left[n_{1}, \infty\right), n_{1} \geq n_{0}$, then there exists $n_{2} \in\left[n_{1}, \infty\right)$ such that $x_{n} L_{1} x_{n}>0$ or $x_{n} L_{1} x_{n}<0$ for $n \geq n_{2}$. Proof:The proof is similar to that of Lemma 2.1 in [14] and hence the details are omitted.

Lemma 2.3 Let $\left\{x_{n}\right\}$ be a non-oscillatory solution of (1.1) with $x_{n} L_{1} x_{n}>0$ for $n \geq n_{1} \geq n_{0}$ then
$L_{1} x_{n} \geq D_{2}(n) L_{2} x_{n}$ for all $n \geq n_{1}$ (2.3) and
$x_{n} \geq D^{*}(n) L_{2}^{1 / \delta} x_{n}$ for all $n \geq n_{1}(2.4)$

Proof:Let $\left\{x_{n}\right\}$ be a non-oscillatory solution of (1.1) say $x_{n}>0, x_{n-\lambda}>0$ and $L_{1} x_{n}>0$ for $n \geq n_{1} \geq n_{0}$. Since $L_{3} x_{n}=-\left(\frac{p_{n}}{d_{n}}\right) L_{1} x_{n}-q_{n} g\left(x_{n-\lambda}\right) \leq 0$.
we have that $L_{2} x_{n}$ is non increasing on $\left[n_{1}, \infty\right)$, and hence

$$
\begin{aligned}
L_{1} x_{n} & =L_{1} x_{n_{1}}+\sum_{s=n_{1}}^{n-1} \Delta\left(L_{1} x_{s}\right) \geq \sum_{s=n_{1}}^{n-1} \Delta\left(L_{1} x_{s}\right) \\
& =\sum_{s=n_{1}}^{n-1} \frac{L_{2} x_{s}}{c_{s}} \geq\left[\sum_{s=n_{1}}^{n-1} \frac{1}{c_{s}}\right] L_{2} x_{n} \\
& =L_{2} x_{n} D_{2}(n)
\end{aligned}
$$

This implies
$\Delta x_{n} \geq\left[\frac{D_{2}(n)}{d_{n}}\right]^{1 / \delta}\left(L_{2} x_{n}\right)^{1 / \delta}$.
Now, summing this inequality from n_{1} to $n-1$ and using the fact that $L_{2} x_{n}$ is non increasing, we find

$$
\begin{aligned}
x_{n} & =x_{n_{1}}+\sum_{s=n_{1}}^{n-1} \Delta x_{s} \geq \sum_{s=n_{1}}^{n-1} \Delta x_{s} \\
& \geq \sum_{s=n_{1}}^{n-1}\left[\frac{D_{2}(s)}{d_{s}}\right]^{1 / \delta}\left(L_{2} x_{s}\right)^{1 / \delta} \\
& \geq\left[\sum_{s=n_{1}}^{n-1}\left[\frac{D_{2}(s)}{d_{s}}\right]^{1 / \delta}\right]\left(L_{2} x_{n}\right)^{1 / \delta} \\
& =D^{*}(n)\left(L_{2} x_{n}\right)^{1 / \delta} \quad \text { for } n \geq n_{1} .
\end{aligned}
$$

This completes the proof.
Next, the following two lemmas are consider by the second order delay difference equation

$$
\begin{equation*}
\Delta\left(c_{n} \Delta x_{n}\right)=Q_{n} x_{n-l} \tag{2.5}
\end{equation*}
$$

where $\left\{Q_{n}\right\}$ is a positive real sequence and l is a positive integer.
Lemma 2.4If

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{s=n-l}^{n-1} Q_{s} D_{2}(s-l)>1 \tag{2.6}
\end{equation*}
$$

then all bounded solutions of (2.5) are oscillatory.

Proof: Let $\left\{x_{n}\right\}$ be a bounded non-oscillatory solution of (2.5), say $x_{n}>0$ and $x_{n-l}>0$ for
$n \geq n_{1}$
for some $n_{1} \geq n_{0}$. By (2.5), $c_{n} \Delta x_{n}$ is strictly non-decreasing on $\left[n_{1}, \infty\right)$. Hence for any $n_{2} \geq n_{1}$, we have

$$
\begin{aligned}
x_{n} & =x_{n_{2}}+\sum_{s=n_{2}}^{n-1} \Delta x_{s}=x_{n_{2}}+\sum_{s=n_{2}}^{n-1} \frac{c_{s} \Delta x_{s}}{c_{s}} \\
& >x_{n_{2}}+c_{n_{2}} \Delta x_{n_{2}} \sum_{s=n_{2}}^{n-1} \frac{1}{c_{s}} \\
& =x_{n_{2}}+c_{n_{2}} \Delta x_{n_{2}} D_{2}(n)
\end{aligned}
$$

$$
\text { So } \Delta x_{n_{2}}<0 \text { as otherwise (2.2) this imply } x_{n} \rightarrow \infty \text { as } n \rightarrow \infty \text {, we get a contradiction to }
$$ the boundedness of ${ }^{x_{n}}$. Also, we get

$$
x_{n}>0, \Delta x_{n}<0 \text { and } \quad \Delta\left(c_{n} \Delta x_{n}\right)>0 \quad \text { on } \quad\left[n_{1}, \infty\right)
$$

Now for $v \geq u \geq n_{1}$, we have

$$
\begin{align*}
x_{u} & >x_{u}-x_{v}=-\sum_{s=u}^{v-1} \Delta x_{s}=-\sum_{s=u}^{v-1} \frac{c_{s} \Delta x_{s}}{c_{s}} \\
& \geq-\left[\sum_{s=u}^{v-1} \frac{1}{c_{s}}\right] c_{v} \Delta x_{v}=-D_{2}(v) c_{v} \Delta x_{v} \tag{2.8}
\end{align*}
$$

For $n \geq s \geq n_{1}$, setting $u=s-l$ and $v=n-l$ in (2.8), we get

$$
\begin{equation*}
x_{s-l}>-D_{2}(n-l) c_{n-l} \Delta x_{n-l} \tag{2.9}
\end{equation*}
$$

Summing (2.5) from $n-l_{\text {to }} n-1$ we obtain

$$
\begin{align*}
&-c_{n-l} \Delta x_{n-l}>c_{n} \Delta x_{n}-c_{n-l} \Delta x_{n-l} \\
&=\sum_{s=n-l}^{n-1} Q_{s} x_{s-l} \\
& \stackrel{(2.9)}{ } \\
& \quad>-\left[\sum_{s=n-l}^{n-1} Q_{s} D_{2}(s-l) c_{n-l} \Delta x_{n-l}\right] \tag{2.10}\\
& \text { (i.e) } 1>\sum_{s=n-l}^{n-1} Q_{s} D_{2}(s-l)
\end{align*}
$$

Taking lim sup as $n \rightarrow \infty$ on both sides of (2.10) yields a contradiction to (2.6) and completes the proof.

Lemma 2.5If

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{s=n-l}^{n-1}\left(\frac{1}{c_{n}} \sum_{s=u}^{n-1} Q_{s}\right)>1 \tag{2.11}
\end{equation*}
$$

then all bounded solutions of (2.5) are oscillatory.

$x_{n-l}>0$ for $n \geq n_{1}$ for some $n_{1} \geq n_{0}$. As in lemma 2.4, we obtain (2.7) summing (2.5) from u to $n-1$, we get

$$
\begin{align*}
-c_{u} \Delta x_{u} & >c_{n} \Delta x_{n}-c_{u} \Delta x_{u}=\sum_{s=u}^{n-1} Q_{s} x_{s-l} \\
& \geq\left[\sum_{s=u}^{n-1} Q_{s}\right] x_{n-l} \\
(\text { i.e })-\Delta x_{u} & >\left[\frac{1}{c_{u}} \sum_{s=u}^{n-1} Q_{s}\right] x_{n-l} \tag{2.12}
\end{align*}
$$

Summing (2.12) from ${ }^{n-l_{\text {to }}}{ }^{n-1}$, we get

$$
\begin{align*}
x_{n-l} & >x_{n-l}-x_{n} \\
& >\left[\sum_{s=n-l}^{n-1}\left(\frac{1}{c_{u}} \sum_{s=u}^{n-1} Q_{s}\right)\right] x_{n-l} \\
1 & >\sum_{s=n-l}^{n-1}\left(\frac{1}{c_{u}} \sum_{s=u}^{n-1} Q_{s}\right) \tag{2.13}
\end{align*}
$$

Taking \lim sup as $n \rightarrow \infty$ on both sides of (2.13) yields a contradiction to (2.11) and completes the proof.

3. Oscillation Results by Riccati method

Now, we establish the main result of this paper.
Theorem 3.1 Assume that (2.1), (2.2) and $\delta \geq \beta$. Suppose (1.2) is non-oscillatory. If there exists a positive sequence $\left\{\rho_{n}\right\}$ such that $\rho_{n}>0$ and $n-\lambda \leq n-l \leq n$ for all $n \geq n_{0}$ satisfying

$$
\limsup _{n \rightarrow \infty} \sum_{s=n_{1}}^{n-1}\left[k \rho_{s} q_{s}-\frac{A^{2} s}{4 B_{s}}\right]=\infty
$$

$$
\begin{equation*}
\text { for any } \quad n_{1} \in I, \quad \text { where for } \quad n \geq n_{1} \tag{3.1}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
A_{n}=\frac{\Delta \rho_{n}}{\rho_{n+1}}-\frac{\rho_{n}}{\rho_{n+1}} \frac{p_{n}}{d_{n}} D_{2}(n) \tag{3.2}\\
B_{n}=c^{*} \frac{\rho_{n}}{\rho_{n+1}^{2}}\left[\frac{D_{2}(n-\lambda)}{d_{n-\lambda}}\right]^{1 / \delta}\left[D^{*}(n-\lambda)\right]^{\beta-1}
\end{array}\right.
$$

and (2.6) or (2.11) holds with
$Q_{n}=\left[c k q_{n}\left(D_{1}(n-l)\right)^{\beta}-\frac{p_{n}}{d_{n}}\right] \geq 0$ for all $n \geq n_{1}$ with $c, c^{*}>0$ then every solution $\left\{x_{n}\right\}$ of (1.1) or $L_{2} x_{n}$ is oscillatory.

Proof:

Let $\left\{x_{n}\right\}$ be a non-oscillatory solution of (1.1) on $\left[n_{1}, \infty\right), n_{1} \geq n_{0}$. Without loss of generality, we may assume that $x_{n}>0$ and $x_{n-\lambda}>0$ for $n \geq n_{1}$. From lemma 2.2, it follows that $L_{1} x_{n}<0$ or $L_{1} x_{n}>0$ for $n \geq n_{1}$. First, we assume $L_{1} x_{n}>0$ on $\left[n_{1}, \infty\right)$. By (1.1), $L_{2} x_{n}$ is strictly decreasing. Hence for any $n_{2} \geq n_{1}$, we have

$$
\begin{align*}
L_{1} x_{n} & =L_{1} x_{n_{2}}+\sum_{s=n_{2}}^{n-1} \Delta\left(L_{1} x_{s}\right)=L_{1} x_{n_{2}}+\sum_{s=n_{2}}^{n-1} \frac{L_{2} x_{s}}{c_{s}} \\
& \leq L_{1} x_{n_{2}}+\left[\sum_{s=n_{2}}^{n-1} \frac{1}{c_{s}}\right] L_{2} x_{n_{2}}=L_{1} x_{n_{2}}+L_{2} x_{n_{2}} D_{2}(n) \tag{3.3}
\end{align*}
$$

So $L_{2} x_{n_{2}}>0$ as otherwise (2.2) would imply $L_{1} x_{n} \rightarrow-\infty$ as $n \rightarrow \infty$, a contradiction to the positively of $L_{1} x_{n}$. Altogether $L_{2} x_{n}>0$ on $\left[n_{1}, \infty\right)$.
Define

$$
\begin{equation*}
w_{n}=\frac{\rho_{n} L_{2} x_{n}}{x_{n-\lambda}^{\beta}} \tag{3.4}
\end{equation*}
$$

By using (1.1), (2.3) and the condition (ii) on g, we obtain

$$
\begin{aligned}
& \Delta w_{n}=\frac{\rho_{n}}{x_{n-\lambda}^{\beta}} \Delta L_{2} x_{n}+L_{2} x_{n+1}\left(\frac{\rho_{n}}{x_{n-\lambda}^{\beta}}\right) \\
& =\Delta \rho_{n} \frac{w_{n+1}}{\rho_{n+1}}+\frac{\Delta L_{2} x_{n} w_{n}}{L_{2} x_{n}}-\beta \rho_{n} \frac{\Delta x_{n-\lambda}}{x_{n-\lambda}} \frac{w_{n+1}}{\rho_{n+1}} \\
& \stackrel{(1.1)}{=} \Delta \rho_{n} \frac{w_{n+1}}{\rho_{n+1}}-\frac{w_{n}\left[\frac{p_{n}}{d_{n}} L_{1} x_{n}+q_{n} g\left(x_{n-\lambda}\right)\right]}{L_{2} x_{n}}-\beta \rho_{n} \frac{\Delta x_{n-\lambda}}{x_{n-\lambda}} \frac{w_{n+1}}{\rho_{n+1}} \\
& \stackrel{(2.3)}{\leq} \frac{\Delta \rho_{n} w_{n+1}}{\rho_{n+1}}-w_{n} \frac{p_{n}}{d_{n}} D_{2}(n)-k \rho_{n} q_{n}-\beta \rho_{n} \frac{\Delta x_{n-\lambda}}{x_{n-\lambda}} \frac{w_{n+1}}{\rho_{n+1}}
\end{aligned}
$$

Since $L_{2} x_{n}$ is decreasing, we have $\frac{\Delta x_{n+1-\lambda}}{\Delta x_{n-\lambda}} \geq\left(\frac{d_{n-\lambda}}{d_{n+1-\lambda}}\right)^{1 / \delta}$ and $\frac{w_{n+1}}{\rho_{n+1}} \leq \frac{w_{n}}{\rho_{n}}$

$$
\begin{align*}
\Delta w_{n} \leq & -k \rho_{n} q_{n}-\frac{w_{n+1}}{\rho_{n+1}} \rho_{n} \frac{p_{n}}{d_{n}} D_{2}(n)+\Delta \rho_{n} \frac{w_{n+1}}{\rho_{n+1}}-\beta \rho_{n} \frac{\Delta x_{n-\lambda}}{x_{n-\lambda}} \frac{w_{n+1}}{\rho_{n+1}} \\
& =-k \rho_{n} q_{n}+A_{n} w_{n+1}-\beta \rho_{n} \frac{\Delta x_{n-\lambda}}{x_{n-\lambda}} \frac{w_{n+1}}{\rho_{n+1}} \tag{3.5}
\end{align*}
$$

From the definition of $L_{1} x_{n}$ and (2.3), we get

$$
\begin{aligned}
\Delta x_{n-\lambda} & =\left[\frac{1}{d_{n-\lambda}} L_{1} x_{n-\lambda}\right)^{1 / \delta} \\
& \geq\left[\frac{D_{2}(n-\lambda)}{d_{n-\lambda}}\right]^{1 / \delta}\left[L_{2} x_{n-\lambda}\right]^{1 / \delta} \\
& \geq\left[\frac{D_{2}(n-\lambda)}{d_{n-\lambda}}\right]^{1 / \delta}\left[L_{2} x_{n}\right]^{1 / \delta} \\
\frac{\Delta x_{n-\lambda}}{x_{n-\lambda}} & \geq\left[\frac{D_{2}(n-\lambda)}{\rho_{n} d_{n-\lambda}}\right]^{1 / \delta} \frac{\rho_{n}^{1 / \delta}\left(L_{2} x_{n}\right)^{1 / \delta}}{x_{n-\lambda}^{\beta / \delta}} x_{n-\lambda}^{\beta / \delta-1} \\
& =\left[\frac{D_{2}(n-\lambda)}{\rho_{n} d_{n-\lambda}}\right]^{1 / \delta} w_{n}^{1 / \delta} x_{n-\lambda}^{\beta / \delta-1}
\end{aligned}
$$

and (3.5) implies,

$$
\begin{equation*}
\Delta w_{n} \leq-k \rho_{n} q_{n}-\beta \frac{\rho_{n} w_{n+1}^{1+1 / \delta}}{\rho_{n+1}}\left[\frac{D_{2}(n-\lambda)}{\rho_{n+1} d_{n-\lambda}}\right]^{1 / \delta} x_{n-\lambda}^{\beta / \delta-1}+w_{n+1} A_{n} \tag{3.6}
\end{equation*}
$$

It follows from $L_{3} x_{n}<0$ and $0<L_{2} x_{n} \leq L_{2} x_{n_{1}}=c_{1}$ for $n \geq n_{1}$. Hence $c_{n} \Delta\left(L_{1} x_{n}\right)=L_{2} x_{n} \leq c_{1}$ for all $n \geq n_{1}$ and thus we have $d_{n}\left(\Delta x_{n}\right)^{\delta}=L_{1} x_{n}=L_{1} x_{n_{1}}+\sum_{s=n_{1}}^{n-1} \Delta\left(L_{1} x_{s}\right) \quad$ for all $n \geq n_{2}=n_{1}+1$ that

$$
\begin{array}{ll}
\leq L_{1} x_{n_{1}}+c_{1} \sum_{s=n_{1}}^{n-1} \frac{1}{c_{s}} \\
=L_{1} x_{n_{1}}+c_{1} D_{2}(n) & \text { where }
\end{array} \quad \tilde{c}_{1}=c_{1}+\frac{L_{1} x_{n_{1}}}{D_{2}(n)}
$$

$$
=\left[\frac{L_{1} x_{n_{1}}}{D_{2}(n)}+c_{1}\right] D_{2}(n) \quad \begin{aligned}
& \text { Choose } n_{2} \leq n \text { we have } \\
& x_{n}=x_{n_{2}}+\sum_{s=n_{2}}^{n-1} \Delta x_{s}
\end{aligned}
$$

$$
\leq\left[\frac{L_{1} x_{n_{1}}}{D_{2}(n)}+c_{1}\right] D_{2}(n)
$$

$$
=\tilde{c}_{1} D_{2}(n)
$$

$\leq x_{n_{2}}+\sum_{s=n_{2}}^{n-1}\left(\frac{\widetilde{c}_{1} D_{2}(s)}{d_{s}}\right)^{1 / \delta}$
$\leq x_{n_{2}}+\sum_{s=n_{1}}^{n-1}\left(\frac{\widetilde{c}_{1} D_{2}(s)}{d_{s}}\right)^{1 / \delta}$
$=x_{n_{2}}+\widetilde{c}_{1}^{1 / \delta} D^{*}(n)$
$=\left[\frac{x_{n_{2}}}{D^{*}(n)}+\widetilde{c}_{1}^{1 / \delta}\right] D^{*}(n)$
$\leq\left[\frac{x_{n_{2}}}{D^{*}(n)}+\widetilde{c}_{1}^{1 / \delta}\right] D^{*}(n)$
$=c_{2} D^{*}(n)$
where $c_{2}=\frac{x_{n_{2}}}{D^{*}(n)}+\tilde{c}_{1}^{1 / \delta}$

Thus we have
$x_{n-\lambda}^{\beta / \delta-1} \geq c_{2}^{\beta / \delta-1}\left[D^{*}(n-\lambda)\right]^{\beta / \delta-1} \quad$ for $\quad n \geq n_{2}$

From (3.4) and (2.4) we get

$$
\begin{align*}
w_{n} & =\frac{\rho_{n} L_{2} x_{n}}{x_{n-\lambda}^{\beta}} \\
& \leq \frac{\rho_{n} L_{2} x_{n-\lambda}}{x_{n-\lambda}^{\beta}} \\
& \leq \rho_{n}\left(D^{*}(n-\lambda)\right)^{-\delta} x_{n-\lambda}^{\delta-\beta} \text { for } n \geq n_{1} \tag{3.8}
\end{align*}
$$

By using (3.7) and (3.8), we obtain
$w_{n} \leq c_{2}^{\delta-\beta} \rho_{n}\left[D^{*}(n-\lambda)\right]^{-\beta}$
Hence

$$
\begin{equation*}
w_{n}^{1 / \delta-1} \geq c_{2}^{(\delta-\beta)(1 / \delta-1)} \rho_{n}^{1 / \delta-1}\left[D^{*}(n-\lambda)\right]^{-\beta(1 / \delta-1)} \quad \text { for } \quad n \geq n_{2} \tag{3.9}
\end{equation*}
$$

By using (3.7) and (3.9) in (3.6), we obtain

$$
\begin{align*}
\Delta w_{n} & \leq-k \rho_{n} q_{n}+A_{n} w_{n+1}-\frac{\beta \rho_{n} c_{2}^{\beta-\delta}}{\rho_{n+1}^{2}}\left[\frac{D_{2}(n-\lambda)}{d_{n-\lambda}}\right]^{1 / \delta}\left[D^{*}(n-\lambda)\right]^{\beta-1} w_{n+1}^{2} \\
& \leq-k \rho_{n} q_{n}+A_{n} w_{n+1}-B_{n} w_{n+1}^{2} \\
& \leq-k \rho_{n} q_{n}+\frac{A_{n}^{2}}{4 B_{n}} \tag{3.10}
\end{align*}
$$

for $n \geq n_{2}$ where A and B are in (3.2) with $c^{*}=\beta c_{2}^{\beta-\delta}$. Summing (3.10) from n_{2} to $n-1$, we see that

$$
\sum_{s=n_{2}}^{n-1}\left[k \rho_{s} q_{s}-\frac{A_{s}^{2}}{4 B_{s}}\right] \leq w_{n_{2}}-w_{n} \leq w_{n_{2}}
$$

which contradicts (3.1) Next, we assume $L_{1} x_{n}<0$ on $\left[n_{1}, \infty\right)$. Then the case $L_{2} x_{n} \leq 0$ cannot hold for all large n, say $n \geq n_{2} \geq n_{1}$. Definition from $L_{1} x_{n}$, we obtain,
$\Delta x_{n}=\left(\frac{L_{1} x_{n}}{d_{n}}\right)^{1 / \delta} \leq\left(\frac{L_{1} x_{n_{2}}}{d_{n}}\right)^{1 / \delta}, n \geq n_{2}$
and from (2.1) that $x_{n}<0$ for all large n , which is a contradiction. Thus, assume $x_{n}>0, L_{1} x_{n}<0$ and $L_{2} x_{n} \geq 0$ for all large n, say $n \geq n_{3} \geq n_{2}$. Now $v \geq u \geq n_{3}$, we have

$$
\begin{aligned}
x_{u}-x_{v} & =-\sum_{s=u}^{v-1} d_{\tau}^{-1 / \delta}\left(d_{\tau}\left(\Delta x_{\tau}\right)^{\delta}\right)^{1 / \delta} \\
& \geq\left(\sum_{s=u}^{v-1} d_{\tau}^{-1 / \delta}\right)\left(-L_{1} x_{v}\right)^{1 / \delta}
\end{aligned}
$$

Setting

$$
u=n-\lambda \quad \text { and } \quad v=n-l, \text { we get }
$$

$$
x_{n-\lambda} \geq D_{1}(n-l)\left(-L_{1} x_{n-\lambda}\right)^{1 / \delta}=D_{1}(n-l) x_{n-l}
$$

For $n \geq n_{3}$ where $x_{n}=\left(-L_{1} x_{n}\right)^{1 / \delta}>0$ for $n \geq n_{3}$. From (1.1), the fact that $\left\{x_{n}\right\}$ is decreasing and $n-\lambda \leq n-l \leq n$, we obtain

$$
\Delta\left(c_{n} \Delta z_{n}\right)+\frac{p_{n}}{d_{n}} z_{n-l} \geq k q_{n}\left[D_{1}(n-l)\right]^{\beta} z_{n-l}\left(z_{n-l}\right)^{\beta / \delta-1}
$$

Where $z=x^{\delta}$, since z is decreasing and $\delta \geq \beta$ there exists a constant $c_{4}>0$ such that $z_{n}^{\beta / \delta-1} \geq c_{4}$ for $n \geq n_{2}$. Thus

$$
\Delta\left(c_{n} \Delta z_{n}\right) \geq\left[c_{4} k q_{n}\left(D_{1}(n-l)\right)^{\beta}-\frac{p_{n}}{d_{n}}\right] z_{n-l}
$$

Proceeding exactly as in the proof of lemma 2.4 and 2.5 , we arrive at the desired conclusion thus completing the proof.

Corollary 3.2. Assume (2.1), (2.2) and $\delta \geq \beta$. Suppose (1.2) is non-oscillatory and $A_{n} \leq 0$. Where A_{n} is defined as in (3.2). If there exist a positive sequence $\left\{\rho_{n}\right\}$ such that $\rho_{\mathrm{n}}>0$ and $n-\lambda \leq n-l \leq n \quad$ for all $n \geq n_{0} \quad$ and $\lim _{n \rightarrow \infty} \sup \sum_{s=n_{1}}^{\infty} \rho_{s} q_{s}=\infty \quad$ for any $n_{1} \in I$ and (2.6) or (2.11) holds with Q as in Theorem 3.1, then every solution x_{n} of (1.1) or $L_{2} x_{n}$ is oscillatory.

Theorem 3.3 Let the conditions (2.1), (2.2) are holds and $\delta \geq \beta$. Suppose (1.2) is nonoscillatory. Assume that $n-\lambda \leq n-l \leq n$ for all $n \geq n_{0} \quad$ and (2.6) or (2.11) holds with Q as in Theorem 3.1. If every solution of the first order delay equation

$$
\begin{equation*}
\Delta w_{n}+P_{n} w_{n-\lambda}+Q_{n_{1}} w_{n-\lambda}^{\beta / \delta}=0 \text { for all } n \geq n_{2} \tag{3.11}
\end{equation*}
$$

is oscillatory, then every solution $\left\{x_{n}\right\}$ of (1.1) or $L_{2} x_{n}$ is oscillatory.

Proof: Let $\left\{x_{n}\right\}$ be a non-oscillatory solution of (1.1) on $\left[n_{1}, \infty\right), n_{1} \geq n_{0}$. Without loss of generality, we may assume that $x_{n}>0$ and $x_{n-\lambda}>0$ for $n \geq n_{1}$. From lemma 2.2 , we have $L_{1} x_{n}<0$ or $L_{1} x_{n}>0$ for $n \geq n_{1 .}$ If $L_{1} x_{n}>0$ on $\left[n_{1}, \infty\right)$ then as in the proof of Theorem 3.1, we get $L_{2} x_{n}>0$ on $\left[n_{1}, \infty\right)$.

We can choose $n_{2} \geq n_{1}$ such that $n-\lambda \geq n_{1}$ forall $n \geq n_{2}$, and so (2.4) gives

$$
\begin{equation*}
x_{n-\lambda} \geq D^{*}(n-\lambda)\left(L_{2} x_{n-\lambda}\right)^{1 / \delta} \text { for all } n \geq n_{2} \tag{3.12}
\end{equation*}
$$

Using (2.3) and (3.12) in (1.1) we obtain
$\Delta\left(L_{2} x_{n}\right)+\frac{p_{n}}{d_{n}} D_{2}(n) L_{2} x_{n}+k q_{n}\left(D^{*}(n-\lambda)\right)^{\beta}\left(L_{2} x_{n-\lambda}\right)^{\beta / \delta} \leq 0$
for $n \geq n_{2}$, It follows that
$\Delta w_{n}+P_{n} w_{n-\lambda}+Q_{n_{1}} w_{n-\lambda}^{\beta / \delta} \leq 0$ for all $n \geq n_{2}$,
where $w_{n}=L_{2} x_{n}, \quad P_{n}=\frac{p_{n}}{d_{n}} D_{2}(n), Q_{n_{1}}=k q_{n}\left(D^{*}(n-\lambda)\right)^{\beta}$
This inequality has a positive solution, and by Lemma 2.7 in [13]. We see that (3.11) has a positive solution, which is a contradiction. The case when $L_{1} x_{n}<0$ on $\left[n_{1}, \infty\right)$ is similar to that of Theorem 3.1 and hence is omitted. This completes the proof.

Corollary 3.4 Let the conditions (2.1), (2.2) are holds and $\delta \geq \beta$ suppose (1.2) is nonoscillatory. Assume that $n-\lambda \leq n-l \leq n$ for all $n \geq n_{0}$ and (2.6) or (2.11) holds with Q as in Theorem 3.1. If
$\liminf _{n \rightarrow \infty} \sum_{s=n-\lambda}^{n} Q_{s_{1}}>\left(\frac{\lambda}{\lambda+1}\right)^{\lambda+1}$ then every solution $\left\{x_{n}\right\}$ of (1.1) or $L_{2} x_{n}$ is oscillatory

4. Oscillation Results:

In this section, we establish new oscillation results for (1.1) by using double sequence.
Let us introduce a double sequence $\left\{H_{n, s}\right\}, n, s \in N\left(n_{0}\right)$ such that

$$
\begin{equation*}
H_{n, n}=0 \text { for } n \in N\left(n_{0}\right) \tag{i}
\end{equation*}
$$

$H_{n, s}>0$ for $n>s \in N\left(n_{0}\right)$
$\Delta_{2} H_{n, s}=H_{n, s+1}-H_{n, s} \leq 0$ for $n>s \in N\left(n_{0}\right)$
Suppose that $\left\{h_{n, s} \mid n>s \in N\left(n_{0}\right)\right\} \quad$ is a double sequence with $\Delta_{2} H_{n, s}=-h_{n, s} \sqrt{H_{n, s}}$ for $n>s \in N\left(n_{0}\right)$.

Theorem 4.1 Let the conditions (2.1), (2.2) are holds and $\delta \geq \beta$. Suppose (1.2) is nonoscillatory. Assume that there exists a positive sequence $\left\{\rho_{n}\right\}$ such that $\rho_{n}>0$ and $n-\lambda \leq n-l \leq n$, for all $n \geq n_{0}$ satisfying

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \frac{1}{H_{n, n_{1}}} \sum_{s=n_{1}}^{n-1} k \rho_{s} q_{s} H_{n, s}-\frac{P_{n, s}^{2}}{4 B_{s}}=\infty \tag{4.1}
\end{equation*}
$$

for all large $n \geq n_{1}$, where $P_{n, s}=h_{n, s}-A_{s} \sqrt{H_{n, s}}$,
with A and B defined as in Theorem 3.1. If (2.6) or (2.11) holds with Q as in Theorem 3.1, then
every solution $\left\{x_{n}\right\}$ of (1.1) or $L_{2} x_{n}$ is oscillatory.
Proof: Let $\left\{x_{n}\right\}$ be a non-oscillatory solution of (1.1) on $\left[n_{1}, \infty\right), n_{1} \geq n_{0}$. Without loss of generality, we may assume $x_{n}>0$ and $x_{n-\lambda}>0$ for $n \geq n_{1}$ From the Proof of Theorem (3.1),

$$
\begin{aligned}
\Delta w_{n} & \leq-k \rho_{n} q_{n}+A_{n} w_{n+1}-B_{n} w_{n+1}^{2} \\
\sum_{s=n_{1}}^{n-1} k \rho_{s} q_{s} H_{n, s} & \leq \sum_{s=n_{1}}^{n-1} H_{n, s}\left[-\Delta w_{s}+A_{s} w_{s+1}-B_{s} w_{s+1}^{2}\right] \\
& =w_{n_{1}} H_{n, n_{1}}+\sum_{s=n_{1}}^{n-1}\left[w_{s+1} \Delta_{2} H_{n, s}+H_{n, s} A_{s} w_{s+1}-H_{n, s} B_{s} w_{s+1}^{2}\right] \\
& =w_{n_{1}} H_{n, n_{1}}+\sum_{s=n_{1}}^{n-1}\left[w_{s+1}\left(-h_{n, s} \sqrt{H_{n, s}}\right)+H_{n, s} A_{s} w_{s+1}-H_{n, s} B_{s} w_{s+1}^{2}\right] \\
& =w_{n_{1}} H_{n, n_{1}}+\sum_{s=n_{1}}^{n-1}\left\{\left(-H_{n, s} B_{s} w_{s+1}^{2}\right)+w_{s+1}\left[\left(-h_{n, s} \sqrt{H_{n, s}}\right)+H_{n, s} A_{s}\right]\right\} \\
& =w_{n_{1}} H_{n, n_{1}}-\sum_{s=n_{1}}^{n-1}\left\{H_{n, s} B_{s} w_{s+1}^{2}+w_{s+1}\left[h_{n, s} \sqrt{H_{n, s}}-H_{n, s} A_{s}\right]\right\} \\
& =w_{n_{1}} H_{n, n_{1}}-\sum_{s=n_{1}}^{n-1}\left\{H_{n, s} B_{s} w_{s+1}^{2}+w_{s+1}\left[h_{n, s}-\sqrt{H_{n, s}} A_{s}\right] \sqrt{H_{n, s}}\right\} \\
& =w_{n_{1}} H_{n, n_{1}}-\sum_{s=n_{1}}^{n-1}\left\{H_{n, s} B_{s} w_{s+1}^{2}+w_{s+1} P_{n, s} \sqrt{H_{n, s}}\right\}
\end{aligned}
$$

we obtain
$=w_{n_{1}} H_{n, n_{1}}-\sum_{s=n_{1}}^{n-1}\left[\sqrt{H_{n, s}} \sqrt{B_{s}} w_{s+1}+\frac{P_{n, s}}{2 \sqrt{B_{s}}}\right]^{2}+\sum_{s=n_{1}}^{n-1} \frac{P_{n, s}^{2}}{4 B_{s}}$
$=w_{n_{1}} H_{n, n_{1}}+\sum_{s=n_{1}}^{n-1} \frac{P_{n, s}^{2}}{4 B_{s}}$
Thus weobtain,
$\frac{1}{\mathrm{H}_{\mathrm{n}, \mathrm{n}_{1}}}\left[\sum_{s=n_{1}}^{n-1} k \rho_{s} q_{s} H_{n, s}-\frac{P_{n, s}^{2}}{4 B_{s}}\right] \leq w_{n_{1}}$
which is contradicts to (4.1).

Theorem 4.2 Assume all the conditions of Theorem 4.1 are hold except (4.1). Moreover, suppose that for every $n_{1}>n_{0}$,

$$
\begin{aligned}
& 0<\inf _{s \geq n_{1}}\left[\lim \inf _{n \rightarrow \infty} \frac{H_{n, s}}{H_{n, n_{1}}}\right] \leq \infty, \\
& \lim _{n \rightarrow \infty} \sup \frac{1}{H_{n, n_{1}}} \sum_{s=n_{1}}^{n-1} \frac{c_{3} P_{n, s}^{2}}{B_{s}}<\infty,
\end{aligned}
$$

and there is a sequence $\left\{\chi_{n}\right\}$ such that
$\sum_{s=n_{1}}^{\infty} \frac{1}{c_{3}} B_{s}\left[\chi_{s}^{+}\right]^{2}=\infty$ where $\chi_{s}^{+}=\max \left\{\chi_{s}, 0\right\}$
and
$\lim _{n \rightarrow \infty} \sup \frac{1}{H_{n, n_{1}}} \sum_{s=n_{1}}^{n-1}\left[k \rho_{s} q_{s} H_{n, s}-\frac{p_{n, s}^{2}}{4 B_{s}}\right] \geq \chi_{n_{1}}$
then every solution $\left\{x_{n}\right\}$ of (1.1) or $L_{2} x_{n}$ is oscillatory.

Proof: Let $\left\{x_{n}\right\}$ be a non-oscillatory solution of (1.1) on $\left[n_{1}, \infty\right)$. Without loss of generality, we may assume $x_{n}>0$ and $x_{n-\lambda}>0$ for $n \geq n_{1}$. Proceeding as in the proof of Theorem 4.1, we obtain

$$
\sum_{s=n_{1}}^{n-1} k \rho_{s} q_{s} H_{n, s} \leq w_{n_{1}} H_{n, n_{1}}+\sum_{s=n_{1}}^{n-1} \frac{p_{n, s}^{2}}{4 B_{s}}-\sum_{s=n_{1}}^{n-1}\left[\sqrt{H_{n, s} B_{s}} w_{s+1}+\frac{P_{n, s}}{2 \sqrt{B_{s}}}\right]^{2}
$$

Using (4.2) we obtain

$$
\begin{aligned}
\chi_{n_{1}} & \leq \lim _{n \rightarrow \infty} \sup \frac{1}{H_{n, n_{1}}} \sum_{s=n_{1}}^{n}\left[k \rho_{s} q_{s} H_{n, s}-\frac{P_{n, s}^{2}}{4 B_{s}}\right] \\
& \leq w_{n_{1}}-\lim _{n \rightarrow \infty} \inf \frac{1}{H_{n, n_{1}}} \sum_{s=n_{1}}^{n-1}\left[\sqrt{H_{n, s} B_{s}} w_{s+1}+\frac{P_{n, s}}{2 \sqrt{B_{s}}}\right]^{2}
\end{aligned}
$$

and hence
$\liminf _{n \rightarrow \infty} \frac{1}{H_{n, n_{1}}} \sum_{s=n_{1}}^{n-1}\left[\sqrt{H_{n, s} B_{s}} w_{s+1}+\frac{P_{n, s}}{2 \sqrt{B_{s}}}\right]^{2}<\infty$
Define
$c_{n_{1}}=\frac{1}{H_{n, n_{1}}} \sum_{s=n_{1}}^{n-1} H_{n, s} B_{s} w_{s+1}^{2}$
$c_{n_{2}}=\frac{1}{H_{n, n_{1}}} \sum_{s=n_{1}}^{n-1} \sqrt{H_{n, s}} P_{n, s} w_{s+1}$
It follows from (4.3) that

$$
\liminf _{n \rightarrow \infty}\left[c_{n_{1}}+c_{n_{2}}\right]<\infty
$$

The remainder of the proof is similar to that of [9] and hence it is omitted. The rest of the proof of the case if $x_{n}>0$ and $L_{1} x_{n}<0$ is similar to that of the proof of Theorem 3.1 and hence it is omitted.

5.Examples:

In this section, we present some examples.
Example 5.1 Consider the third order non linear damped delay difference equation of the form,

Here

$$
\begin{gather*}
\Delta\left(\frac{1}{2} \Delta\left(\Delta x_{n}\right)^{3}\right)+2\left(\Delta x_{n}\right)^{3}+32 g\left(x_{n-2}\right)=0 \quad n \geq n_{0} \tag{5.1}\\
c_{n}=\frac{1}{2}, d_{n}=1, \delta=3, \quad p_{n}=2, k=1, \quad \beta=3 \text {, and } \quad q_{n}=32
\end{gather*}
$$

All the conditions of corollary 3.2 are satisfied with $\rho_{n}=n$. In fact $x_{n}=(-1)^{n}$ is one such oscillatory solution of equation (5.1)

Example 5.2 Consider the third order non linear damped delay difference equation of the form,

$$
\begin{equation*}
\Delta\left(2 \Delta\left(\Delta x_{n}\right)^{3}\right)+\left(\Delta x_{n}\right)^{3}+\frac{72}{3} g\left(x_{n-4}\right)=0 \quad n \geq 4 \tag{5.2}
\end{equation*}
$$

Here $c_{n}=2, d_{n}=1, \delta=3, \quad p_{n}=1, k=3, \quad \beta=1$, and $\quad q_{n}=\frac{72}{3}$
All the conditions of corollary 3.2 are satisfied. In fact $x_{n}=(-1)^{n+1}$ is one such oscillatory solution of equation (5.2)

References

[1] R.P. Agarwal, Difference Equations and Inequalities. Theory, Methods and Applications, Marcel Dekker, Inc., New York, 2000.
[2] R.P. Agarwal, M. Bohner, S.R. Grace, D. O’Regan, Discrete Oscillation Theory, Hindawi Publishing Corporation, New York, 2005.
[3] R.P. Agarwal, S.R. Grace, Oscillation of certain third-order difference equations, Comput. Math. Appl.42(3-5)(2001), 379-384
[4] R.P. Agarwal, S.R. Grace, D. O' Regan, On the oscillation of certain third-order difference equations, Adv. Difference Equ.3(2005),345-367.
[5] M.F.Atlas, A. Tiryaki, A. Zafer, Oscillation of third-order nonlinear delay difference equations, Turkish J. Math. 36 (3) (2012), 422-436.
[6] M. Bohner, C. Dharuman, R. Srinivasan, E. Thandapani, Oscillation criteria for third-order nonlinear functional difference equations with damping, Appl. Math. Inf. Sci. 11 (3) (2017), 669-676.
[7] S. R. Grace, R.P. Agarwal, J.R. Graef, Oscillation criteria for certain third order nonlinear difference equations, Appl. Anal. Dicrete Math. 3(1) (2009), 27-38.
[8] J. R. Graef, E. Thandapani, Oscillatory and asymptotic behavior of solutions of third order delay difference equations, Funkcial. Ekvac. 42 (3) (1999), 355-369.
[9] Horng-Jaan Li and Cheh-Chih Yeh, Oscillation Criteria for Second-Order Neutral Delay Difference Equations, Computers Math. Applic. Vol 36, No.10-12, pp.123-132,1998
[10] W.G., Kelley, A.C. Peterson, Difference Equations; An Introduction with Application, New

York. Academic Press 1991.
[11] S .H. Saker, Oscillation of third-order difference equations, Port. Math., 61(2004), 249-257.
[12] E. Thandapani, S. Pandian, R. K. Balasubramaniam, Oscillatory behavior of solutions of third order quasilinear delay difference equations, Stud. Univ. Zilina Math. Ser. 19 (1) (2005), 65-78.
[13] E. Thandapani, S. Selvarangam, Oscillation theorems of second order quasilinear neutral difference equations. J. Math. Comput. Sci. 2012;2:866-879
[14] Yadaiah Arupula, V. Dharmaiah, Oscillation of third order nonlinear delay difference equation, Int. J. Math\& Appl., 6 (3) (2018), 181-191.

