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ABSTRACT:  In this paper, we consider the third order non-linear difference equations of the 

form
( )( )( ) ( ) ( ) .0,0 0 =++ − nnxgqxpxdc nnnnnnn 



 We establish new oscillation 

results for the third order equation by using Riccati transformation technique. Examples are 

given to illustrate the importance of the results. 
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Introduction 

We consider non-linear third order difference equations of the form

( )( )( ) ( ) ( ) 0,0 0 =++ − nnxgqxpxdc nnnnnnn 



(1.1) 

where 1  is the ratio of positive odd integers. 

(i) 
   nnn pdc ,,

and
 nq

 are positive real sequences. 

(ii) 
 ng

is a real sequence such that ( ) 0uug  for 0u and ( ) 0/  kuug 

where   is 

ratio of positive integers. 

(iii)  is a positive integer. 

By a solution of equation (1.1) we mean a real sequence 
 nx

 defined for 
− 0nn

 and 

satisfies the equation (1.1) for all 0nn 
. A solution {𝑥𝑛} of equation (1.1) is said to be 

oscillatory if is neither eventually positive nor eventually negative, and otherwise non-

oscillatory. A solution 
 nx

 of equation (1.1) is called non-oscillatory if all its solutions are 

non-oscillatory. 

There are many papers dealing with oscillatory and asymptotic behavior of solutions of 

several classes of third order functional difference equations, see [3]-[8] , [10]- [13] and the 

reference cited therein. In[14] the authors considered the following the second order 

difference equation                       

( ) 01

1

=+ +

+

n

n

n
nn z

q

p
zc

                                                 

(1.2)                           
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is non- oscillatory . 

Very recently, in [6] the authors discussed the oscillatory and asymptotic behavior of 

solution of the equation  

( )( )( ) ( ) ( ) 01 ,0 nnyfqypyba lnnnnnnn =++ −+



                                      (1.3) 

Equation (1.3), the authors assumed the coefficient sequence of the damping term is positive. 

 In section 2, we will present some lemmas which are useful in establish our main 

results. In section 3, we will state and prove the main results and give examples  illustrate 

them. 

2. Auxiliary Results 

 We define, 

( )( ) ( ) ( )nnnnnnnnnn xLxLxLcxLxLdxLxxL 2312010 ,,, ====


 on I. 

Hence (1.1) can be written as  

( ) 013 =+









+ −nnn

n

n
n xgqxL

d

p
xL

. 

Remark 2.1 

 We denote the following notations: 

( )
( )

( )
( )

,
1

,
1

D
1 1

2/11

1 1

 
−

=

−

=

==
n

ns

n

ns Ss
c

nD
d

n


 and 

( )
( )


−

=









=

1
/1

2*

1

n

ns sd

sD
nD



 

for 
 nnn 10 ,  

We assume that 
=

→
)(lim 1 nD

n  as →n                                                                                     

(2.1)  

and 
=

→
)(lim 2 nD

n  as →n (2.2) 

Lemma 2.2Suppose that (1.2) is non-oscillatory. If 
}{ nx

 is a non-oscillatory solution of (1.1) 

on
 ) 011 ,, nnn 

, then there exists  ) ,12 nn  such that 
01 nn xLx

 or 
01 nn xLx

for 2nn  . 

Proof:The proof is similar to that of Lemma 2.1 in [14] and hence the details are omitted. 

Lemma 2.3 Let 
}{ nx

be a non-oscillatory solution of (1.1) with 
01 nn xLx

 for 01 nnn 
 

then 

( ) nn xLnDxL 221 
 for all 1nn                                                                                                    

(2.3) and 
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( ) nn xLnDx /1

2

*
for all 1nn  (2.4) 

 

Proof:Let 
}{ nx

  be a non-oscillatory solution of (1.1) say 
,0nx 0−nx

 and 
01 nxL

for 

01 nnn 
. Since 

( ) .013 −









−= −nnn

n

n
n xgqxL

d

p
xL

 

we have that nxL2  is non increasing on  ),1n , and hence 

( ) ( )

( )nDxL

xL
cc

xL

xLxLxLxL

n

n

n

ns

n

ns ss

s

n

ns

n

ns

ssnn

22

2

1 1
2

1 1

1111

1 1

1 1

1

1

=









=

+=

 

 

−

=

−

=

−

=

−

=

 

This implies  

( ) ( ) .
/1

2

/1

2 



n

n

n xL
d

nD
x 










 

Now, summing this inequality from 1n  to 1−n  and using the fact that nxL2  is non 

increasing, we find  

( ) ( )

( ) ( )

( )( ) .1

/1

2

*

/1

2

1
/1

2

/1

2

/1
1

2

1 1

1

1

1 1

1

nnforxLnD

xL
d

sD

xL
d

sD

xxxx

n

n

n

ns s

s

n

ns s

n

ns

n

ns

ssnn

=



































+=





 

−

=

−

=

−

=

−

=











 
This completes the proof. 

Next, the following two lemmas are consider by the second order delay difference equation 

    
( ) lnnnn xQxc −=

                                                                     
(2.5)             

where
 nQ

 is a positive real sequence and l is a positive integer. 

Lemma 2.4If 

 

( )
−

−=
→

−
1

2 1suplim
n

lns

s
n

lsDQ

                                                                                                  
(2.6) 

then all bounded solutions of (2.5) are oscillatory. 

 

Proof: Let 
}{ nx

 be a bounded non-oscillatory solution of (2.5), say 
0nx

 and 
0−lnx

 for 
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1nn   

for some 01 nn 
. By (2.5), nn xc 

 is strictly non-decreasing on  ),1n . Hence for any 

,12 nn  we have 

)(

1

2

1

11

222

2

222

2

2

2

2

nDxcx

c
xcx

c

xc
xxxx

nnn

n

ns s

nnn

n

ns s

ss
n

n

ns

snn

+=

+


+=+=





−

=

−

=

−

=

 

So 
0

2
 nx

 as otherwise (2.2) this imply 
→nx

as →n , we get a contradiction to 

the boundedness of nx
. Also, we get 

0,0  nn xx
and 

0)(  nn xc
 on  ),1n                                                                  

(2.7) 

Now for 1nuv  , we have 

( ) )8.2(
1

2

1

1 1

vvvv

v

us s

v

us

v

us s

ss
svuu

xcvDxc
c

c

xc
xxxx

−=







−


−=−=−



 

−

=

−

=

−

=

For ,1nsn   setting lsu −=  and lnv −=  in (2.8), we get  

 
( ) lnlnls xclnDx −−− −− 2                                                                                             

(2.9) 

Summing (2.5) from ln− to 1−n  we obtain 

( ) 







−−

=

−−

−−

−

−=

−

−=

−

−−−−





lnln

n

lns

s

n

lns

lss

lnlnnnlnln

xclsDQ

xQ

xcxcxc

1

2

)9.2(

1

 

( ) )10.2(1(i.e)
1

2
−

−=

−
n

lns

s lsDQ

 
Taking lim sup as →n on both sides of (2.10) yields a contradiction to (2.6) and completes 

the proof. 

 

Lemma 2.5If 

 

1
1

suplim
1 1











 
−

−=

−

=
→

n

lns

n

us

s

n
n

Q
c

                                                                                              
(2.11) 

then all bounded solutions of (2.5) are oscillatory. 

 

Proof: Let 
}{ nx

be a bounded non-oscillatory solution of equation (2.5), say 
0nx

 and 
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0−lnx
 for 1nn  for some 01 nn 

. As in lemma 2.4, we obtain (2.7) summing (2.5) from u

to 1−n , we get 

)12.2(
1

).(
1

1

1

ln

n

us

s

u

u

ln

n

us

s

n

us

lssuunnuu

xQ
c

xei

xQ

xQxcxcxc

−

−

=

−

−

=

−

=

−









−











=−−







 

Summing (2.12) from ln− to 1−n , we get 

)13.2(
1

1

1

1 1

1 1

 

 

−

−=

−

=

−

−

−=

−

=

−−


































−

n

lns

n

us

s

u

ln

n

lns

n

us

s

u

nlnln

Q
c

xQ
c

xxx

 
Taking lim sup as →n  on both sides of (2.13) yields a contradiction to (2.11) and 

completes the proof. 

  

 

3. Oscillation Results by Riccati method 

 

Now, we establish the main result of this paper. 

 

Theorem 3.1 Assume that (2.1), (2.2) and   . Suppose (1.2) is non-oscillatory. If there 

exists a positive sequence 
 n  such that 

0n  and nlnn −−  for all 0nn 
 

satisfying 

 

=







−

−

=
→

1 2

1
4

suplim
n

ns s

s

ss
n B

A
qk

 for any In 1 , where for 1nn  .                                    

(3.1) 

( )

( )
( ) 

)2.3(
1*

/1

2

2

1

*

2

11













−






 −
=

−


=

−

−+

++






















nD
d

nD
cB

nD
d

p
A

nn

n
n

n

n

n

n

n

n
n

 

and (2.6) or (2.11) holds with 

( )( ) 01 







−−=

n

n
nn

d

p
lnDckqQ



for all 1nn   with 0, * cc  then every solution 
}{ nx

 of (1.1) 

or nxL2  is oscillatory. 
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Proof: 

Let 
 nx

 be a non-oscillatory solution of (1.1) on 
 ) 011 ,, nnn 

. Without loss of 

generality, we may assume that 
0nx

 and 
0−nx

for 1nn  . From lemma 2.2, it follows 

that 
01 nxL

 or 

01 nxL
for 1nn  . First, we assume 

01 nxL
on  ),1n . By (1.1), nxL2  is strictly 

decreasing. Hence for any 12 nn  , we have 

( ) )3.3(
1

)(

2212

1

1

1
2

1

1

111

222

2

2

2

2

2

2

nDxLxLxL
c

xL

c

xL
xLxLxLxL

nnn

n

ns s

n

n

ns s

s
n

n
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snn

+=







+

+=+=





−

=

−

=

−

=

 

So 
0

22 nxL
 as otherwise (2.2) would imply 

−→nxL1 as →n , a contradiction to the 

positively of nxL1 . Altogether 
02 nxL

on  ),1n .  

Define  

)4.3(2






−

=
n

nn
n

x

xL
w

 

By using  (1.1), (2.3) and the condition (ii) on g, we obtain 

( )

( )
1

1
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Since nxL2  is decreasing, we have
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−
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From the definition of nxL1  and (2.3), we get 
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d
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x
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nD
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x

 

and (3.5) implies, 

( )
nnn

nnn

nn
nnn Awx

d

nDw
qkw 1

1/
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1
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/11

1
+
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−
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                                                 (3.6) 

It follows from 
03 nxL

and  1122 for0
1

nncxLxL nn =
. Hence 

( ) 121 cxLxLc nnn =
 for all 1nn   and thus we have 

for all 112 += nnn  that  

 

where 
( )
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1

11
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nD

xL
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n
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Choose nn 2  we have, 
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Thus we have 

  )7.3()( 2

1/*1/

2

1/ nnfornDcxn −
−−−
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From (3.4) and (2.4) we get 
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By using (3.7) and (3.8), we obtain 

( )   
−− − nDcw nn

*
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Hence  

( )( ) ( )  ( )
)9.3(2

1/1*1/11/1
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1/1 nnfornDcw nn −
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By using (3.7) and (3.9) in (3.6), we obtain 
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for 2nn  where A and B are in (3.2) with 
 −= 2

* cc . Summing (3.10) from 2n  to 1−n , we 

see that 
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which contradicts (3.1) Next, we assume 
01 nxL

 on  ),1n . Then the case 
02 nxL

 cannot 

hold for all large n, say 12 nnn  . Definition from nxL1 , we obtain, 

 

 

and  from (2.1) that 
0nx

 for all large n, which is a 

contradiction. Thus, assume 
0,0 1  nn xLx

 and 
02 nxL

 for all large n, say 23 nnn 
. 

Now 3nuv 
, we have 
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Setting          lnvnu −=−= and , we get 

( )( ) ( ) lnnn xlnDxLlnDx −−− −=−− 1

/1
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For 
( ) 3

/1

13 for0where nnxLxnn nn −=


. From (1.1), the fact that {xn}is decreasing and 

nlnn −− , we obtain 
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n
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Where 
xz = , since z is decreasing and    there exists a constant 04 c such that 

4

1/ czn −

 for 2nn  . Thus  

( ) ( )( ) ln

n

n
nnn z

d

p
lnDkqczc −
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14

 
Proceeding exactly as in the proof of lemma 2.4 and 2.5, we arrive at the desired conclusion 

thus completing the proof. 

 

Corollary 3.2. Assume (2.1), (2.2) and   . Suppose (1.2) is non-oscillatory and 
0nA

. 

Where An is defined as in (3.2). If there exist a positive sequence 
 n  such that 

nlnn −−  and0n    for all  0nn 
and 

Inq
ns

ss
n

=


=
→

1anyforsuplim
1



 

and (2.6) or (2.11) holds with Q as in Theorem 3.1, then every solution xn of (1.1) or L2xn is  

oscillatory. 

 

Theorem 3.3 Let the conditions (2.1), (2.2) are holds and   . Suppose (1.2) is non-

oscillatory. Assume that  nlnn −− for all  0nn 
and (2.6) or (2.11) holds with Q as 

in Theorem 3.1. If every solution of the first order delay equation  

2

/ 0
1

nnallforwQwPw nnnnn =++ −−


                                                                      (3.11)                        

is oscillatory,  then every solution { xn} of (1.1) or L2xn is oscillatory. 

 

Proof: Let{ xn}be a non-oscillatory solution of (1.1) on 
 ) 011 ,, nnn 

. Without loss of 

generality, we may assume that 
0nx

and 1for0 nnxn − . From lemma 2.2, we have 

01 nxL
 or 

01 nxL
 for .1nn 

If 
01 nxL

on  ),1n  then as in the proof of Theorem 3.1, we 

get 
02 nxL

on  ),1n .  
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               We can choose 12 nn   such that 21 nnforallnn − , and so (2.4) gives 
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Using (2.3) and (3.12) in (1.1) we obtain 
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This inequality has a positive solution, and by Lemma 2.7 in [13 ]. We see that (3.11) has a 

positive solution, which is a contradiction. The case when 
01 nxL

 on  ),1n  is similar to that 

of Theorem 3.1 and hence is omitted. This completes the proof. 

 

Corollary 3.4 Let the conditions (2.1), (2.2) are holds and    suppose (1.2) is non-

oscillatory. Assume that nlnn −−   for all 0nn 
 and (2.6) or (2.11) holds with Q as in 

Theorem 3.1. If  

 
1

1
inflim

1

+

−=
→










+




 

n

ns

s
n

Q

 then every solution 
}{ nx

 of (1.1) or nxL2  is oscillatory 

. 

4. Oscillation Results: 

In this section, we establish new oscillation results for (1.1) by using double sequence. 

Let us introduce a double sequence 
  ( )0, ,, nNsnH sn 

  such that  

(i) 
( )0, 0 nNnforH nn =

 

(ii) 
( )0, 0 nNsnforH sn 

 

(iii) 
( )0,1,,2 0 nNsnforHHH snsnsn −= +  

Suppose that
( ) 0, | nNsnh sn 

 is a double sequence with 

( )0,,,2 nNsnforHhH snsnsn −=
. 

Theorem 4.1 Let the conditions (2.1), (2.2) are holds and   . Suppose (1.2) is non-

oscillatory. Assume that there exists a positive sequence 
 n  such that  

0n  and 

,nlnn −− for all 0nn 
 satisfying  
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=
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s

sn
n

ns

snss
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H 4
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                                                   (4.1)                

for all large 1nn  , where 
,,,, snssnsn HAhP −=

 

with A and B defined as in Theorem 3.1.  If (2.6) or (2.11) holds with Q as in Theorem 3.1, then 
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every solution 
}{ nx

 of (1.1) or nxL2  is oscillatory. 

Proof: Let 
}{ nx

 be a non-oscillatory solution of (1.1) on 
 ) 011 ,, nnn 

. Without loss of 

generality, we may assume 
0and0  −nn xx

for 1nn   From the Proof of Theorem (3.1), 

we obtain
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Theorem 4.2 Assume all the conditions of Theorem 4.1 are hold except (4.1). Moreover, 

suppose that for every 
,01 nn 
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and there is a sequence 
 n  such that 
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then every solution 
}{ nx

 of (1.1) or nxL2  is oscillatory. 

 

Proof: Let 
}{ nx

 be a non-oscillatory solution of (1.1) on  ),1n . Without loss of generality, 

we may assume 1for0and0 nnxx nn  − . Proceeding as in the proof of Theorem 4.1, we 

obtain 
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Using (4.2) we obtain 
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and hence 
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Define 
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It follows from (4.3) that 

+
→

]inf[lim
21 nn

n
cc

 
The remainder of the proof is similar to that of [9 ] and hence it is omitted. The rest of the 

proof of the case if 
0and0 1  nn xLx

 is similar to that of the proof of Theorem 3.1 and 

hence it is omitted. 

 

5.Examples: 

In this section, we present some examples. 

Example 5.1 Consider the third order non linear damped delay difference equation of the 

form,  
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( ) ( ) 02

33
0)(322

2

1
nnxgxx nnn =++








 −

(5.1) 

Here 
32,3,1,2,3,1,

2

1
======= nnnn qandkpdc 

 

All the conditions of corollary 3.2 are satisfied with 
nn =

.  In fact 
n

nx )1(−=
 is one such 

oscillatory solution of equation (5.1) 

 

Example 5.2 Consider the third order non linear damped delay difference equation of the 

form,  

( )( ) ( ) 40)(
3

72
2 4

33
=++ − nxgxx nnn

(5.2)                          

Here 3

72
,1,3,1,3,1,2 ======= nnnn qandkpdc 

 

All the conditions of corollary 3.2 are satisfied.  In fact 
1)1( +−= n

nx
 is one such oscillatory 

solution of equation (5.2) 
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