ORIGINAL RESEARCH

A Hospital Based Prospective Study to Assess the Clinic-Hematological Profile of Nutrition Anemia Among Adolescents at a Tertiary Care Centre

¹Abender Singh Maanju, ²Priyanka Singh, ³Monisha Sahai

^{1,3}Associate Professor, ²Assistant Professor, Department of Pediatrics, Jaipur National University Institute for Medical Sciences & Research Centre (JNUIMSRC), Jaipur, Rajasthan, India

Correspondence:

Abender Singh Maanju
Associate Professor, Department of Pediatrics, JNUIMSRC, Jaipur, Rajasthan, India
Email: maanju1039@gmail.com

ABSTRACT

Background: Anemia is the world's second leading cause of disability and thus one of the most serious global public health problems. Adolescents of both sexes are particularly vulnerable for developing anemia because of rapid growth and girls additionally because of the onset of menstruation. The aim of this study to assess the clinic-hematological profile of nutrition anemia among adolescents at a tertiary care centre.

Materials& Methods: This is a hospital based observational study done on 50 adolescents attending OPD at JNUIMSRC, Jaipur, Rajasthan, India during one year study period will be participating in this study as per the inclusion and exclusion criteria. Anemia will be diagnosed according to the World Health Organisation (WHO) criteria. Student t test (two tailed, independent) has been used to find the significance of study parameters on continuous scale between two groups (Inter group analysis) on metric parameters by using SPSS version 22.0 software.

Results: In 50 anemic adolescents studied, 34 were females, 16 were males. 50% belonged to middle adolescence. 30% of study population belonged to lower middle socioeconomicstatus according to modified Kuppuswamy's classification. Anemia was high amongvegetarian adolescent girls (55.88%). The commonest clinical presentation was fatiguewhich was 56%. 42% adolescents had severe thinness according to WHO classification of body mass index (BMI). 48% had food skipping, 20.58% of adolescent girls hadmenstrual irregularities. There was no significant difference among the adolescent males and females pertaining to clinical eatures and laboratory values.

Conclusion: Nutritional anemia is a burden on adolescent children, as it affects the transition of childhood to adulthood, and it influences the future health. B_{12} deficiency is highly prevalent among the vegetarians. Nutritional awareness education should be given to adolescents as they fear of gaining weight, irregular food habits, food faddism, decreased intake of green leafy vegetables/animal proteins.

Keywords: Adolescence, Iron Deficiency Anemia, Nutrition, Vegetarian.

INTRODUCTION

Adolescence is a period of transition from childhood to adulthood, during whichcertain health problems and risk behaviors prevalent during this period influence their future health. Anemia is a global public health problem affecting both developing and developed countries with major consequences for human health as well as social and economic development.

Anemia is the world's second leading cause of disability andthus one of the most serious global public health problems. It is widely prevalent in the developing countries.

Iron deficiency anemia is the most common nutritional anemia affecting morethan 2 billion people worldwide.³ It can have profound negative impact on psychologicaland physical development, behavior and learning performance, working capacities andreproductive health.⁴ It can result from inadequate iron intake, reduced bioavailability ofdietary iron, increased need for iron, chronic blood loss and parasitic infections.⁵Adolescents of both sexes are particularly vulnerable for developing anemia because ofrapid growth and girls additionally because of the onset of menstruation. Despite strongreasons focusing on anemia on adolescents, only little research was done.

A study of health and family welfare (2000) showed point prevalence of anemia in various age groups and was found to be high in both sexes. In adolescents, the prevalence rate of anemia was very – very high I.e., 65.8 percent in boys and 81.3 percent in girls. ⁶

Iron deficiency anemia and even iron deficiency without significant anemia, affects attention span, alertness, and learning in both infants and adolescents. Adolescent girls with serum ferritin levels < 12 ng/ml but without anemia have demonstrated improved verbal learning and memory after taking iron for 8weeks.⁷

The populations differences in the prevalence of anemia are explained byenvironmental factors affecting nutrition, chief among these are economic status, ethniccustoms and geographic considerations. The aim of this study to assess the clinic-hematological profile of nutrition anemia among adolescents at a tertiary care centre.

MATERIALS& METHODS

This is a hospital based observational study done on 50 adolescents attending OPD at JNUIMSRC, Jaipur, Rajasthan, India during one year study period will be participating in this study as per the inclusion and exclusion criteria.

INCLUSION CRITERIA

- Age group: 10 19 years.
- Those who full fill the WHO criteria for anaemia.

EXCLUSION CRITERIA

- Below 10 years and above 19 years of age.
- Anemia due to acute blood loss.
- Bone marrow suppression.
- Hemolytic anemia.

METHODS

A detailed history and physical examination will be done according to a predesigned proforma to elicit various nutritional and socioeconomic factors. Age of the child will be recorded in completed years.

Then blood will be drawn, and haemoglobin will be estimated by an automated analyser followed by a peripheral blood smear, serum Iron, TIBC, transferrin saturation, ferritin, folic acid and vitamin B12 levels will be estimated. Anemia will be diagnosed according to the World Health Organisation (WHO) criteria. Anemia was graded as:

- Mild: Hb% above 10gm/dl and less than 12gm/dl.
- Moderate: Hb% between 7 gm/dl and 10gm/dl.
- Severe: Hb% lesser than 7 gm/dl.

STATISTICAL METHODS

Student t test (two tailed, independent) has been used to find the significance of study parameters on continuous scale between two groups (Inter group analysis) onmetric parameters by using SPSS version 22.0 software.

RESULTS

Our study showed that in early adolescence, 35.29% were females and 50% were males. In middle adolescence, 50% were females and 50% were males. In late adolescence, 14.7% were females. There is significant relation between middle adolescence and anemia. Anemia was more prevalent in the lower middle socio economic status comprising of 30%, followed by upper lower comprising of 28%, followed by lower class comprising of 26%.

It is found that 55.88% of adolescent girls prefer vegetarian diet where as only 31.25% of adolescent boys preferred vegetarian diet. There is significant relation between diet and anemia. 42% of study population had severe thinness according to WHO classification of body massi ndex. Out of 50adolescents only 6% were dewormed and does not show any statistical significance (table 1).

Table 1: Demographic profile of adolescents

Demographic profile	Gender		Total (N=50)	P-value
	Female	Male (N=16)		
	(N=34)			
	Age i	in years		
10-13	12(35.29%)	8(50%)	20(40%)	<0.05*
14-16	17(50%)	8(50%)	25(50%)	
17-19	5 (14.70%)	0(0%)	5(10%)	
	Socioecoi	nomic status		
Upper middle	6(17.64%)	2 (12.5%)	8(16%)	>0.05
Lower middle	9 (26.47%)	6 (37.5%)	15 (30%)	
Upper lower	9 (26.47%)	5 (31.25%)	14 (28%)	
Lower	10 (29.41%)	3 (18.75%)	13 (26%)	
	Diet	pattern		
Vegetarian	19 (55.88%)	5 (31.25%)	24 (48%)	<0.05*
Non-vegetarian	15 (44.11%)	11 (68.75%)	26 (52%)	
	BMI	(kg/m ²)		
<16	13 (38.23%)	8 (50%)	21(42%)	>0.05
16-16.9	5 (14.70%)	1 (6.25%)	6 (12%)	1
17-18.49	8 (23.52%)	1 (6.25%)	9 (18%)	
18.5-24.9	8 (23.52%)	5 (31.25%)	13 (26%)	
>25	0(0%)	1 (6.25%)	1 (2%)	
	Dew	orming		
Not done	31 (91.17%)	16 (100%)	47 (94%)	>0.05
Done	3 (8.82%)	0 (0%)	3 (6%)	

There was no significant difference among the adolescent males and females pertaining to clinical features and laboratory values showed in table no. 2& 3.

Table 2: Clinical features of patients studied

Clinical features	Gender			
	Female (n=34)	Male (n=16)	Total (n=50)	p value
Fatigue	19 (55.88%)	9 (56.25%)	28 (56%)	>0.05
Appetite	16(47.05%)	9 (56.25%)	25 (50%)	>0.05

Food skipping	18 (52.94%)	6 (37.5%)	24 (48%)	>0.05
Irritability	9 (26.47%)	6 (37.5%)	15 (30%)	>0.05
Scholastic performance	12 (35.29%)	8 (50%)	20 (40%)	>0.05
Bare foot walking	14 (41.17%)	5 (31.25%)	19 (38%)	>0.05
Recurrent infection	6 (17.64%)	4 (25%)	10 (20%)	>0.05

Table 3: Comparison of clinical variables according to gender

Parameters	Gender		Total	p value
	Female (N=34)	Male (N=16)		
BMI (kg/m ²)	18.23±4.24	17.73±2.56	17.84±3.35	>0.05
Hemoglobin %	8.16±2.47	8.69±2.35	8.46±2.43	>0.05
MCV	107.78±146.23	78.52±5.65	94.43±83.78	>0.05
MCH	25.78±3.61	25.55±3.04	25.68±3.34	>0.05
MCHC	32.46±3.18	31.92±2.76	32.24±2.93	>0.05
TIBC	459.72±150.66	437.23±145.57	444.65±147.77	>0.05
Serum Iron	33.68±24.34	43.56±42.18	38.43±33.56	>0.05
Transferrin	11.98±8.98	13.85±15.42	13.36±14.33	>0.05
Vitamin B ₁₂	284.54±144.20	290.23±248.46	288.54±223.28	>0.05
Folic acid	6.68±3.32	7.58±4.25	7.25±4.09	>0.05
Serum ferritin	14.55±9.36	12.16±5.63	13.36±7.24	>0.05

DISCUSSION

The number of studies on adolescent nutritional anemia is limited, the few studies which were done concentrated on adolescent girls. In this study, boys were also included to study their pattern of nutritional deficiency. A study done by SahuML¹⁰ shows similar prevalence of anaemia among early and late adolescent males, and middle adolescent females.

Irregular eating habits and lower consumption of animal and green leafy foods contribute to the development of anaemia. Poverty limits the availability and consumption of foods of animal origin. In this study, 48% adolescents consumed vegetarian diet whereas in study conducted by Sahu ML 48% adolescents consumed vegetarian diet. In one of the studies conducted by Vanderjagtetal represented that the lower intake of meat results in lower vitamin B12 level. 12

Socio economic status when compared to the study done byNeelam S. Deshpande, showed similar prevalence of anemia among the lower middle-class adolescents. ¹³ BMI is not significantwith anemia, a similar reference was seen in a study donebyAnmol. ¹⁴ Fatigue is the commonest complaint; it is similar in both adolescent males and females in present study and study done by Kaur. ¹⁵

Associated iron with B12 deficiency is similar to study done by Suarez. Studies done by Yasemin had shown increased prevalence of iron with B 12 deficiency. There was 90.9% folic acid deficiency in study conducted by Suarez whereas only 20% were deficient in the study group, this is probably because of the iron and folic acid supplementation given by the government. The serum iron level is inadequate in female adolescents in both study group and study conducted by SahuML. The mean B12levelswere lower instudy doneby Yasemin when compared to the present study.

No single test is diagnostic of iron deficiency anemia. Multiple tests give better assessment of the iron status. MCV if determined by electronic counter is an accurate and practical laboratory test. MCHC is the least sensitive of various indices. The key diagnostic tests for the evaluation of iron deficiency anemia are estimation of transferring saturation, free erythrocyte protoporphyrin and serum ferritin.

CONCLUSION

Nutritional anemia is a burden on adolescent children, as it affects the transition of childhood to adulthood, and it influences the future health. B_{12} deficiency is highly prevalent among the vegetarians. Therefore, early screening and supplementation is essential. Nutritional awareness education should be given to adolescents as they fear of gaining weight, irregular food habits, food faddism, decreased intake of green leafy vegetables/animal proteins.

REFERENCES

- 1. The World Health Report1998. Lifeinthe 21stcentury: A vision for all. Report of Director General. Geneva, World Health Organization, 1998.
- 2. Benoist B, McLean E, Cogswell M, Egli I, Wojdyla D. Worldwide prevalence ofanaemia 2000-2015. WHO Global Database on Anaemia. Geneva: World HealthOrganisation;2020.
- 3. Guidelines to use iron supplements to prevent and treat iron deficiency anaemia. Washington DC, International Nutritional Anaemia Consultative Group, 1997.
- 4. De Maeyer EM et al. preventing and controlling iron deficiency anaemia throughprimary health care: a guide for health administrators and programme managers. Geneva, World Health Organisation, 1989.
- 5. Hallberg L. Iron absorption and iron deficiency. Humannutrition. Clin Nutr 1982;36:259-78.
- 6. Chakravarty I, Ghosh, K. Micronutrient Malnutrition Present Status and Future Remedies. JIndianMed.Assoc.2000;98 (9):532-542.
- 7. Kliegman, Behrman, Jenson, Stanton. Nelson text book of Pediatrics 18thedition Volume2 Saunders Elsevier Pg.2015.
- 8. Chriton RW, Bothwell TH. Iron Deficiency; Prevalence and Prevention. ClinicalHematology1982;11:309-311.
- 9. De Maeyer E M, Dallman P, Gurney, Hallberg L, Srikantia S G. Assessment, prevalence and consequence of Iron deficiency anemia. Preventing and controlling iron deficiency anemia through primary health care: WHO, Geneva.1981: 7-9.
- 10. SahuML, DasR, NangiaA, BachaniD, DietaryIronIntake, Prevalence of Anemia and Iron Status of Adolescents: A Community Based Study, www.ruralhealthgoa2022.com.
- 11. Soekarjo DD, de Pee S, Bloem MW, et al. Socio-economic status and puberty arethe main factors determining anemia in adolescent girls and boys in East Java,Indonesia. EurJClinNutr. 2001;55(11):932–9.
- 12. VanderJagtDJ, SpelmanK, AmbeJ,etal. Folate and vitaminB12 status of adolescent girls in northern Nigeria. J Natl Med Assoc. 2000;92(7):334–40.
- 13. NeelamDeshpande, DevkinandanKarva, SharadAgarkhedkar, ShishirDeshpande. Prevalence of anemia in adolescent girls and its co-relation with demographic factors.2013;3 (4):235-239.
- 14. Anmol Gupta, Anupam Parashar, Anitha Thakur, Deepak Sharma. Anemia amongadolescent girls in Shimla hills of north India: Does BMI and onset of menarchehavearole?.2012;66 (5):126-130.
- 15. Kaur IP, Kaur S. A comparison of Nutritional Profile and Prevalence of Anemia among Rural Girls and Boys. Journal of Exercise Science and Physiotherapy 2011;7 (11):11-18.
- 16. Suarez T, Torrealba M, Villegas N, Osorio C, Garcia-Casal MN. [Iron, folic acid and vitaminB12 deficiencies related to anemia in adolescents from a region with a high incidence of congenital malformations in Venezuela]. Arch Latino AmNutr. 2005 Jun;55(2):118-23.
- 17. Yasemin Isik Balci, Aysun Karabulut, Dolunay Gurses, Ibrahim Ethem Covut. Prevalence and Risk Factors of Anemia among Adolescents in Denizli, Turkey. Iran

ISSN 2515-8260 Volume 09, Issue 03, 2022

JPediatr.Mar2012;22(1):77-81.