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Abstract 

Underwater image processing has always been a promising and thrilling task due to the 

natural condition and the lighting effect for taking the image requires good artificial 

lights. While taking underwater images lots of difficulties are faced by photographers such 

as the shadows, non-uniform lighting, color shading, etc. Recognizing the object 

underwater is very difficult in order to the environmental condition. Man-made object 

recognition was made with underwater optical sensors to capture underwater images that 

have gained more attention from the users. Deep learning methods have demonstrated 

impressive performance in object recognition tasks from natural images. Anyhow it is hard 

to collect all the labelled underwater optical images for training the model. It is possible to 

acquire labelled images. Based on the assumption that it is possible to acquire sufficient 

labeled in-air images, the proposed work leverages a combination of deep learning and 

transfer learning to develop a novel recognition system for the man-made object from 

underwater optical images. The extracted features from the proposed network have high 

representative power and demonstrate robustness in both in-air and underwater imaging 

modalities. Therefore, our proposed framework has the ability to recognize underwater 

man-made objects using only labeled in-air images. The results of experiments on 

simulated data demonstrate that the proposed method outperforms traditional deep 

learning methods in the task of underwater man-made object recognition. 

Keyword: Underwater optical image, man-made object recognition, deep learning, transfer 

learning, unsupervised domain adaptation. 

 

1. Introduction 

Recognization of underwater images is very useful and helpful for several purposes like 

pipeline maintenance, used in mining, monitoring of species  in the ocean, and also used for 

military purposes. Light travel with the speed of 20 m in clear water, its traveling speed is 

little less in the turbid and coastal water [1]. The visibility of light underwater is very low and 

the speed of entering inside water rapidly decreases. When the underwater image is captured 
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at the very low quality then it becomes difficult for recognizing the object. Underwater 

images are captured at a depth level, so there is a possibility of it being poor in quality [2]. 

Underwater image capturing is not always done by the human being because it is captured at 

a deep level inside water so in that case Autonomous Underwater Vehicle the AUVs are used 

for exploring the images. The artificial lights from the AUV give brightness to the light for 

capturing, and it also causes turbidity while driving inside the water bodies resembles as a 

noise. The underwater images must undergo pre-processing for better recognization. The aim 

of image pre-processing is to increase image quality by enhancing distortion and image 

features. It helps to improve image recognition [3]. Much research has been conducted on this 

though it seems to be a challenging one. 

Object recognition is a computer-based visual idea for recognizing objects in an image and 

videos, which includes identifying a similar target with a different image [4,5]. The idea 

behind the recognization of an object is to identifying it from the image and then guiding 

computers to understand as humans do to understand it. The recognization of the image is 

done from various viewpoints like front, side, and back.  

The object is recognized from various shapes and sizes when partly being blocked for the 

viewers [6]. There are many kinds of object recognization that include text, face, lane line, 

voice, etc [7,8]. Almost two 3rd of the earth is covered by water bodies but not a lot of 

technologies to study the marine life has been completely discovered. Especially marine 

safety includes shipwrecking, navy battle, etc. is an important aspect for object recognization 

to be used in marine life surveillance [9]. There are 2 steps of marine object recognization:  

feature extraction and classification. Four geometric features were derived artificially before 

recognizing surface ships [10]. The marine problems such as marine disaster prevention, 

target detection, emergency rescue, tracking, and recognition can be solved by learning the 

marine life clearly [11]. Deep cleaning methods are used for a marine system like marine data 

reconstruction, data classification, data prediction. As a part of a deep learning algorithm, it 

consists of 2 layers of learning which include 2 conventional and fully conventional layers to 

understand complex layers through conversations and it also stimulates the object 

characterization [12]. The traditional vector machine highly supports the object recognization 

and classification when compared to that of the conventional neural networks the CNN due to 

the hyper-parameters [13]. The restricted Boltzmann machine the RBM when integrated into 

the deep learning method the framework for learning has been developed significantly. When 

the powerful GPU with computer access has a great capability in boosting the deep learning 

methods in the process of deep belief network the DBN [14].  

CNN along with RNN and AE when used in the process of object recognition gives great 

results in exploring deep learning architectures [15]. The robust training algorithm enables 

object recognization without the use of artificial factors [16]. The non-linear information is 

obtained from the CNN properties such as shared weight, pooling, local connection, and 

multilayers [17]. 

The success of AlexNet on ImageNet Large-Scale Visual Recognition Challenge the 

ILSVRC deep learning is connected to the CNN method with VGGNet and the ResNet. 

Hence the results from the deep CNN are capable enough of achieving large accuracy and 

data on the deep learning process [18-20].  The DNN has succeeded in the industrial and 
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academic community in deep learning when reviewed [21]. A specific object recognization 

has been processed in 3D, visual, and object segmenting recognition [22].  

In the past years, many deep learning and architectures for marine life objects have been 

proposed but still the advantage, and disadvantages of these ideas are not evolved and it is not 

clearly understood [23]. Because of it, many challenges in identifying them are still found. In 

this research, the deep learning process of marine life is time-based and it also includes both 

the theoretical and practical importance in the marine engineering community.

  

   
Figure 1. Object recognition using multiple images. 

2. Optical Imaging 

The optical and sonar-based system are the 2 main modules used in the image models in the 

process of underwater vision navigation. In the underwater imaging system, the recognization 

of the man-made object plays an important role in research under the concepts of ocean 

object identification, mining, navy and pipeline setting, etc. 

 
Figure 2. Underwater image with low resolution 

When compared to sonar imaging the optical imaging has a better ability to capture details 

such as colors, and underwater object recognization. The development in the underwater 

optical sensor and the man-made object recognization from underwater have been highly 

used in ocean engineering and image processing. Poor image quality is the biggest challenge 

or task in the image optical image analysis. The visibility of light underwater is very low and 

the speed of entering inside water rapidly decreases which makes the quality of the image 

decrease.  
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Only a few studies have been done in the man-made object recognization from underwater 

optical images among that Hou et al identified a color-based and shape object recognization 

technique from the man-made underwater object.  

An underwater man-made object recognization combined a pipeline of image processing 

ideas including edge and line detection, pre-processing, Euclidean shape prediction. A system 

for the man-made object was detected using an unconstrained subsea video [24]. The deep 

learning method has illustrated a powerful performance in the object recognization of natural 

images, so, realistically, deep learning methods can be used for object recognization of 

optical images. Certain challenges are faced in the deep learning method especially the 

availability of the large-scaled labeled data for the estimation of parameters in the training 

phase. Both the training and the testing phase follows the same image processing.  

In this research simpler methods have been used in acquiring sufficient training samples of 

the man-made object from in-air images. It is very simple to capture the multiview of images 

before the man-made object gets submerged in water.  Based on assumptions obtained a 

framework using both deep and transfer learning has been proposed in this paper. During the 

training phase, where the large scale data of the labeled in-air image is combined with the 

unlabelled man-made object. During the testing phase, the ability of the trained model to 

categorize the underwater man-made object with robustness is displayed.  The main 

contribution of our work is a system which can use in-air images to effectively classify man-

made object from underwater optical images.  

 

3. Methods 

3.1. Underwater datasets generation  

He et al research on underwater images is generated based on the depth of field analysis and 

simulation of the underwater environment. It is challenging and costly to collect the depth 

field analysis for simple optical acquisition devices so a simple method has been proposed in 

this research for deep information of field images.  

Color is a significant factor in the underwater image. Nguyen et al used a color transfer 

method based on illumination and 3D gamut on manipulating the color values of the original 

image with the same appearance. The turbidity simulation on the top color transfer is 

obtained for the better representation of the image. Hence this is applied in this paper. The 

result of the signal is obtained with 2 components: direct transmission  

      (1) 

where Icolor is the image obtained through color transfer,  

η is the coefficient of diffusion attenuation obtained from a given real underwater patch,  

 z represents the adjustable distance between Icolor and the reference underwater image, with 

a higher value of z representing higher turbidity.  

 backscattering:  

      (2) 
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where B∞ is the backscatter in the line of sight (LOS) which extends to infinity in water.  

The resulting signal of an underwater image combining the direct transmission and 

backscattering as follows:  

     (3) 

and · represents the element-wise multiplication.  

3.2. Framework for underwater man-made object recognition  

Figure.3 represents the flowchart of our proposed framework. The Alexnet is the CNN based 

deep learning method that has been implemented as the proposed framework of this paper. It 

consists of 5 evolution layer and 3 fully connected layers. The rectified linear unit ReLU is 

applied following the pooling operation on the layers of conv1, conv2, and conv5. The 

classifiers with a fully connected layer are connected at the end of the network. The vector 

generated in the last fully connected layers is proceeded with a soft-max, while the vector 

represents the final prediction of result in all categories. The maximum mean distance, the 

MMD is applied on both the fc7 and fc8 layers of the neural network as the transfer and 

regulated Learning method of the proposed framework. This minimizes the data distribution 

of the different image procedures of in-air images. In this theory, the source domain is the 

transfer learning, the labeled in-air images. While the target domain is the unlabelled 

underwater image. 

The MMD has written in square form using kernel operations:  

    (4) 

where E denotes the expectation, 

 x
s
p and x

s
q are two samples from the source domain,  

while x
t
p and x

t
q are two samples from the target domain; 

 k is the Gaussian kernel function. 

3.3. Data pre-processing  

Image pre-processing plays an important step in marine object recognization with deep 

learning methods where the images and videos are the significant ones in this method. Xiong 

et al proposed a dark channel before the DCP theory in which the original image is 

automatically classified into 2 categories as the clear image and the fuzzy image. The image 

quality of the fuzzy image can be improved using the DCP defogging algorithm. Later the 

clear images are used for the training process in the AlexNet. When compared to the original 

image the underwater image taken from the underwater camera declines in its image quality 

created by the underwater noises.  

In a median filter where only certain pixels are affected by the noises, the other pixels are 

processed [25]. By using an object recognition technique, the underwater videos transfer the 

parameters of the pre-trained AlexNet to the target domain by this the low quality and low-

resolution images are not processed directly [26].  
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The ConNet has shown an extraordinary quality of images and videos where the deep 

networks tolerate the noises. The DN framework permits the non-supervised hierarchical 

image which is used for low-level tasks such as the de-noising and also used for features of 

the marine identification of objects [27].  

By using the DN distinguished features extracted from the low-light noisy underwater images 

the ED-Ne has been designed with high-resolution. The de-conventional layers were applied 

to remove the noise from the image [28]. FDCNet is the filtering deep conventional network 

was designed to classify the sea object. The UDCP is used for calculating the disparity which 

is the main factor in the underwater de scattering [29]. 

The unary and pairwise super-pixel of CNN is learned. The CNN and the UDCP are 

combined with the joint bilateral filtering to attain the classification task of the sea objects. In 

this research, the DA, deep learning, and transfer learning methods are used [30]. SAR-ATR 

is a multi-view deep learning framework that was also used. The image from SAR is obtained 

through a given ground surface as a target from various angles and intervals by the estimated 

SAR platform, where the raw SAR images are not used for this. The newly generated and raw 

data should not be treated equally [31]. Parallel network topology with multi inputs is 

essential so that the SAR images from various views can be obtained and fused layer-by-

layer. The 4-view DCNN attained a better recognition than the SAR-ATR which works under 

a fixed operating condition [32].  

The 360-panoramic images are generated by correcting the images which are taken by an 

underwater drone with a 360-panoramic camera. It has benefited for recognition of fish and 

has attained 87% of deep learning techniques [33].  

 

 

Figure 3. De-Conventional Image Layer 
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Figure 4. Proposed Framework with CNN, AlexNet method with the source and target 

domain  

 

3.4. Feature Extraction  

3.4.1. Transfer learning and fine-tuning techniques  

The object recognition by transfer learning in CNN as attained a significant improvement 

where the pre-trained process has learned the features before which are helpful for the 

recognition task. Transfer learning along with fine-tuning has been a significant method in 

object recognition and it has been applied in various areas [34].  The DA is used for 

supervising the fine-tuning of the parameters in the training process of the target domain. 

This model is derived and named as the UW_CNN.  

3.4.2. Deep convolutional network variants  

 

 

Szegedy et al (2015) have questioned that the learning better for networks with deeper layers 

but the results of the ResNet101, ResNet1001 has shown better results. The disadvantages are 

raised here on the growing number of parameters and the reduction of the coverage speed 

was not ignored. 

The other proposed model such as the GoogLeNet, ResNet, and VGG-16 is the alternative of 

the AlexNet. A large portion of trainable parameters in deep convolutional networks are 

induced by the fully-connected layers. But on CNN where the fully and de convolutional 

operations were proposed by eliminating the fully connected layers.   
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(a) Fully Convolutional Network (FCN)

 

Figure 5. The FCN Structure 

The FCN method in the semantic segmentation task in the full manner which helps in solving 

the problem of the pixel-wise labelling [37]. In the FCN where the framework was composed 

of the convolutional layers and a classifier. In this, the fully-connected layers are transferred 

into the convolutional layers. The fully connected layer is similar to that of the ConvNet. It 

shows that computing is complex that the ConvNet [38]. The FCN is not affected by the fix-

size input images.  

The FCN rapidly reduces the free parameters which have been applied in the aerial image 

semantic labelling and the large-scale remote sensing [39]. Anyhow the FCN method was not 

used in object recognition. The fully-connected layers of the FCN are arranged in 3 

dimensions according to the width, the height, and the depth and used for the target 

recognition of SAR (SAR-ATR) [40].  

A left regulation was used in fully-connected layers and added to the higher convolution 

layers & image segmentation in the up-sampling stage of the FCN [41]. To solve the 

dimension disaster and low accuracy, ED-Net was developed for underwater object 

recognition. Instead of full connection, the deconvolution kernel with a matched feature map 

was used [42]. Underwater images or videos are transformed into deep features by 2 

convolution layers, and then the deconvolution layers are used as decoders for refining the 

images or videos [43]. The DA and transfer learning were employed for solving the data 

starvation problem. The ED-Net attained a higher accuracy than that of the UW-CNN method 

[44]. A RED-Net includes the ED-Net into the residual network. The RED-Net is made of the 

symmetric link of convolutional and de-convolutional layers where the convolutional layers 

act as feature extractors which preserve the components of objects by removing the 

corruptions in the image. De-convolutional layers are used for recovering the image contact 

details. The skip connections between convolutional and corresponding deconvolutional 

layers were built to back-propagate the signal to bottom layers directly [45]. In this context, 

the comprehensive image information was conveyed to the top layers, thereby benefiting in 

recovering the original images. 
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4. Experiments  

4.1. Datasets descriptions  

The dataset from Amazon was used as the original in-air man-made object dataset. The 

dataset contains images of man-made objects downloaded from amazon.com. the images are 

categorized into many groups, each group contains nearly 36 to 100 images. The past 

researchers have used objects with a regular shape and size but in these irregular shapes 

captured from various views have been used through the Amazon dataset. This research is 

contributed to 3 experiments. For this, the obtained images are divided into 2 parts. Both the 

part contains an image from Amazon dataset on the concept of underwater image.  

During the 1st experiment, the training and the testing data were taken from the underwater 

imaging system, where they had the same turbidity values. The image for the experiment was 

generated from the 2 parts of images.  In experiment 2 a set-up for the valuation of the 

AlexNet where the images for training and testing are provided from the same image source. 

This was made to test the performance of the Alexnet where the training process contains the 

labeled in-air images from the source and un-labeled underwater image from the target 

domain from the 1st part. The testing process contains underwater images from part2. The 

same procedure was followed in setting-up the 3rd experiment. It is used for the validation of 

the performance of the framework with transfer and traditional learning of the CNN model. 

The stimulated underwater images used in the above 3 experiments are from the in-air images 

which followed certain procedures. 

 

Figure 6. The proposed framework with Labelled and Unlabelled images 

 
Figure 7. Underwater optical datasets 
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4.2. Implementation details  

In our proposed implementation, the basic server settings are a 56 Intel(R)Xeon(R) CPU E5-

2683 V3@ 2.00GHz, with 64G RAM and an NVIDIA GeForce 1080 GPU. All the images 

fed into the neural network are resized to the same size of 227×227 pixels. The proposed 

network is pre-trained on ImageNet [46,47], and then fine-tuned with our own data.  

4.3. Experimental results  

The experiment result of the 3 experiments has been compared to attain the result with 

various turbidities and reference settings. The AlexNet obtained 55.7% which is the highest 

value in the 1
st
 experiment when compared to all the 3. It is because in the 1

st
  experiment 

both the testing and training processes have the same underwater image. But in the 2
nd

 and 3
rd

 

where the images from the different systems were used in the testing and training process, by 

which the performance of the AlexNet decreased rapidly. The AlexNet performance is the 2
nd

 

experiment was 17.33 percent. And in the 3
rd

 experiment, it was 38.50 percent. It is 

understood that the proposed framework has the capability of transferring knowledge from 

the source to the target domain, which is from in-air to underwater images. For more detail, 

the calculation was made from 31 categories of the dataset in A1 for all the 3 experiments. 

This showed a good performance in experiment 1 and the poor performance was found in the 

2
nd

 experiment. The 3
rd

 performance showed the worst performance than experiment 1.  

 
Figure 8. The Evaluation of 3 experiments.  

5. Conclusion 

This research was based on the framework of recognizing of the underwater man-made 

objects from the optical images. It works on the assumption that the labelled in-air images of 

man-made objects can be attained easily. With the CNN model of transfer learning, this 

model can parallelly obtain from the features of the representative as well as the robust across 

the different imaging systems. This helps us to avoid expressing and explaining the 

underwater images for the model. The result/ conclusion obtained from the study shows that 

the image recognizing performance of the presented algorithm shows that this framework can 

be taken as the successful basic step in the deep learning tool of optical image analysis in the 

underwater based system.   
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