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Abstract: A mathematical method is a powerful tool for the study of chemical reactions. 

This model is based on reaction-diffusion equations that contain a non-linear term 

analogous to the enzymatic kinetics of response of Michaelis-Menten and the hill binding. 

In this paper, an approximate analytical solution of the non-linear differential equations 

that describe the concentrations in mass-action kinetics has been derived for all values of 

parameter using the new homotopy perturbation method. These results are compared with 

the numerical result, and satisfactory agreement is noted. 
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1. INTRODUCTION: 

The rate of reaction is directly proportional to the concentrations of reactant species in 

normal deterministic mass-action kinetics.For example, according to mass-action kinetics, the 

rate of the reaction 321 XXX →+
 is of the form ,21 xxk where ix

the concentration of 

species is iX
 and k is a positive constant.  

Guldberg and Waage[1] first proposed the rule of mass action and recently recorded its 

150th anniversary[2]. Kinetics derived from the law of mass-action are inevitable in 

chemistry and biology, are Michaelis-Menten kinetics or Hill kinetics [3-12]. The possible 

behaviours of mass-action systems also vary wildly; some systems have a single steady-state 

for all choices of rate constants, systems that have multiple steady states, systems that 

oscillate, and systems that admit chaotic behaviour [13]. 

This paper presents new theoretical methods for the analysis of the non-linear differential 

equation in chemical reaction systems. In this communication, unique and simple 

approximate analytical expressions for the concentration of Mass-action kinetics, 

concentration of Michaelis-Menten enzyme kinetics and Mass action system at chemical 

reaction systems are obtained using homotopy perturbation method for various values of 

parameters. 
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Fig.1. Schematics diagram of reaction [16]. 

2. The mathematical formulation of the problem 

2.1. Mass-action kinetics 

The network (Fig.1) contains the following system of differential equations according to 

mass-action kinetics[16]: 
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2.2. Approximation analytical expression of concentrations in mass-action kinetics 

using the new approach of the homotopy perturbation method  

Recently, the new approach of the homotopy perturbation method (NHPM) has been 

employed to solve the non-linear differential equations [17-19]. In this method, one or two 

iterations lead to highly accurate solutions of non-linear problems in physical and chemical 

sciences [20-21]. Solving the non-linear Eqs. (1-5) using the new approach of the homotopy 

perturbation method (Appendix A), the analytical expressions of concentration of mass-

action kinetics can be obtained as follows:  
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2.3. Michaelis-Menten enzyme kinetics or the Hill binding kinetics 

It is usual in biochemistry to see the kinetics of the Michaelis-Menten enzyme or the 

kinetics of Hill binding. These are obtained by quasi-steady-state approximation from mass-

action kinetics, which is a method of model reduction based on the removal of fast 

intermediates [5,9,14]. 

The Michaelis-Menten and Hill kinetics mathematically give rise to functions of the 

reaction rate that are rational functions. By using time-rescaling to delete all denominators 

[15], the analysis of these systems can be simplified to the study of dynamical analogous 

mass-action systems. 

Consider the reversible reaction 121 2 XXX + where the forward reaction 

121 2 XXX →+ is modelled with a Michaelis-Menten reaction rate function 
xk

yxk

+2

1

, and the 

backward reaction 2112 XXX +→ is modelled using standard mass-action kinetics with 

reaction rate function 
2
13 xk

. Then the system of differential equations corresponding to 

these two reactions are described as follows [16]:  
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The initial conditions are 
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By instead using the above equations, one can study the mass-action method as follows 

[16]: 
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corresponding to the reaction network 121 2 XXX + and 211 23 XXX +→ . To get 

from the original system to the mass action system, we have multiplied the vector field by the 

nonzero scalar field 12 xk + ; this preserves the trajectory curves of the system and 

corresponds to a time-rescaling along the trajectories [15].   

2.4. Approximation analytical expression of concentrations in Michaelis-Menten 

enzyme kinetics or the hill binding kinetics using the new approach of the homotopy 

perturbation method  

Solving the non-linear Eqs. (10-12) using the new approach of the homotopy perturbation 

method (Appendix A), the analytical expressions of concentration in  Michaelis-Menten 

enzyme kinetics can be obtained as follows:  
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The analytical expressions of concentration in  the mass-action system can be obtained as 

follows:  

( )*

12*

21

*

21

2*

13*

21

*

11

))exp(1()(
)exp()( xk

xk

txkxk
txkxtx +

−
−=

                          
(18) 

( )*

12

1

*

11

*

13*

21

*

21

))exp(1(
)exp()( xk

k

txkxk
txkxtx +

−−
−−=

                          
(19) 

3. Numerical Simulation  

 The non-linear differential Eqs. (1-5) for Mass-action kinetics, Eqs. (10-15) for 

Michaelis-Menten enzyme kinetics and Mass action system are also solved using numerical 

methods. The function pdex4 in MATLAB software which is the function of solving the 

initial value problems for ordinary differential is used to solve this equation. The MatlaB 

program is also given in Appendix B. The concentrations which are derived from the NHPM 

are compared with the simulation results in Fig. 2-9. Satisfactory agreement is found for all 

values of time t.  

 

4. Result and discussion 

4.1 Mass-action kinetics 

 Eqs. (6-9) represent the new and simple analytical expressions of the concentrations of 

species in Mass-action kinetics for all possible values of parameters.  

Figures 2 and 3  illustrates the behavior of the  concentration  profiles of 4321 and,, xxxx
 

for different values rate constant. The values parameters are taken as 

follows 1 2 3 4 5 60.5, 0.1, 0.01, 0.01, 0.1 and 0.1k k k k k k= = = = = =
 . The effect of all 

the parameter on the concentration are illustrated in Figs. 2,3.  From Figure 2, it is inferred 
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that the concentration of 1x  increases when 76432 and,,, kkkkk
 increases or  

51 and kk
decreases. From Figure 3, it is observed that the concentration of  2x  increases 

when 51 and kk
increases or  62 , kk

decreases. From Figure 4, it is inferred that the 

concentration of 3x
 increases when 64 and kk

 increases or  3k
decreases. From Figure 5, it is 

observed that the concentration of  4x  increases when 5k
increases or  6k

decreases.  

 

 

 

Fig.2. Comparison of analytical expression of  the concentration of 1x  (Eq.6) with 

simulation results for the  initial conditions   (
* * * *

1 2 3 41, 1, 1, 1x x x x= = = =
) for the Mass-

action kinetics. The bold line “__” represent the analytical result and dotted line “***” 

represent the numerical result.
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Fig. 3. Comparison of analytical expression of  the concentration of 2x (Eq.7) with 

simulation results for the initial conditions   (
* * * *

1 2 3 41, 1, 1, 1x x x x= = = =
) in  Mass-action 

kinetics.                       The bold line “__” represent the analytical result and dotted line “***” 

represent the numerical result. 

 

Fig.4. Comparison of analytical expression of the concentration of 3x
 (Eq.8) with 

simulation results for the  initial conditions   (
* * * *

1 2 3 41, 1, 1, 1x x x x= = = =
) in the Mass-

action kinetics for various values of the parameters. The bold line “__” represent the 

analytical result and dotted line “***” represent the numerical result. 
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Fig.5. Comparison of analytical expression of the concentration of 4x  (Eq.9) with 

simulation results for the  initial conditions (
* * * *

1 2 3 41, 1, 1, 1x x x x= = = =
)in the Mass-action 

kinetics for various values of the parameter. The bold line “__” represent the analytical result 

and dotted line “***” represent the numerical result. 

 

 

4.2 Michaelis-Menten enzyme kinetics  

Eqs. (16-19) represent the new and simple approximate analytical expressions of the 

concentration of species in   Michaelis-Menten enzyme kinetics for all possible values of 

parameters. In Figs. 6 and 7, represents the concentration of the Michaelis-Menten enzyme 

kinetics for the concentration of 1x
  and 2x

.  The parameters value is  

1 2 30.5, 0.1, and 0.01k k k= = =
. From the Figure-6, it is observed that the concentration 

1x
increases as the increasing value of a parameter 1 3,k k

 or decreasing the value of a 

parameter 2k
. From the Figure-7, it is concluded that the concentration of 2x

 increases as 

the increasing value of a parameter, 2k
,k3  or decreasing the value of a parameter 1k . 
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.  

Fig.6. Comparison of analytical expression of  the concentration of 1x  (Eq.16) with 

simulation results  for the initial conditions  (
* *

1 21, 1x x= =
) in of the Michaelis-Menten 

enzyme kinetics. he bold line “__” represent the analytical result and dotted line “***” 

represent the numerical result. 

 

 

Fig.7. Comparison of analytical expression of the concentration of 2x (Eq.17) with 

simulation results for the initial conditions  (
* *

1 21, 1x x= =
) In  Michaelis-Menten enzyme 
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kinetics. The bold line “__” represent the analytical result and dotted line “***” represent the 

numerical result.  

 

Equations (18-19) describe, for all possible parameter values, new and simple estimated 

analytical expressions of species concentration 1x
  and 2x

 in the mass action system.                       

Figs. 8 and 9, represents the concentration of 1x
  and 2x

 in the mass-action system for 

different values of parameters. The value of rate constant are  

1 2 30.5, 0.1, and 0.01k k k= = =
. Figs.8 shows the effect of parameters 1 2,k k

and 3k
,on 

concentration profile . It is notice that an increase in 1 2,k k
and 3k

 leads to increase in the 

values of concentration  1x
.                                  Figs. 9, illustrate the behavior of the 

concentration profiles 2x
for different values of the rate constant. . From Figure9, it is 

observed that an increase in the rate constant k1results in a decreasing in concentration x2.  An 

increase in rate constant 2k
 and 3k

 leads to increase in concentration x2.  

 

Fig.8. Comparison of analytical expression of the concentration of 1x  (Eq.18) with 

simulation results  for the initial conditions (
* *

1 21, 1x x= =
) in  Hill kinetics. The bold line 

“__” represent the analytical result and dotted line “***” represent the numerical result. 
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Fig.9. Comparison of analytical expression of the mass-action system for the concentration 

of 2x  (Eq.19) with simulation results and initial condition with various values of parameters                                

(
* *

1 21, 1x x= =
). The bold line “__” represent the analytical result and dotted line “***” 

represent the numerical result. 

 

5. Conclusion 

The system of differential equations describes a chemical reaction solved analytically using 

the new homotopy perturbation method for various values of parameters. This work is mainly 

derived for the concentration of Mass-action kinetics, the concentration of Michaelis-Menten 

enzyme kinetics and Mass action system. The effects of various parameters on concentration 

profiles are discussed. The obtained results have a satisfactory agreement with simulation 

results. 
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Appendix - A 

Analytical solution of Eqs. (10) - (12) using the new homotopy perturbation method. 

Eqs. (10) - (12) can be written as follows: 
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Homotopy for the above eqs. (A1) - (A3) can be constructed as follows: 
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The approximates solution of the eqs. (A4) - (A5) are 

0 1 2 3

2 3

1 1 1 1 1 ...x x px p x p x= + + + +
       (A6) 

0 1 2 3

2 3

2 2 2 2 2 ...x x px p x p x= + + + +
       (A7) 

http://www.crnt.osu.edu/LecturesOnReactionNetworks
http://vcp.med.harvard.edu/papers.html
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Substituting eqs. (A6) and (A7) into eqs. (A4) and (A5) and comparing the coefficients of 

like powers  
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Solving eqs. (A8) and (A9) with initial condition (A3), yields 








































+
−

+
−


























+
= t

xk

xk

xk

kxxk
t

xk

xk
xtx

*

12

*

21

*

21

2

*

1

2*

13

*

12

*

21*

11 exp1
)()(

exp)(
0

  (A10) 








































+
−−

+
−


























+
−= t

xk

xk

k

kxxk
t

xk

xk
xtx

*

12

*

11

1

2

*

1

2*

13

*

12

*

11*

22 exp1
)()(

exp)(
0

  (A11) 

The solution of the above equations as, 
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Appendix B. Matlab code for numerical solution of eqns.(10) and  (11) 

function matrix1 

options= odeset ('RelTol',1e-6,'Stats','on');  

% initial conditions  

Xo = [1;1];   

tspan = [0,10];   

tic  

[t,X] = ode45(@TestFunction,tspan,Xo,options);  

toc  

figure 

hold on  

% plot(t, X(:,1),'-') 

plot(t, X(:,2),'-')  

legend('x1','x2') 

xlabel('t')  

return  

function [dx_dt]= TestFunction(t,x) 

k1=0.5;k2=0.1;k3=0.01;x1=1;x2=1; 

dx_dt(1) = ((k1*x1*x(1))/(k2+x1))-(k3*x1*x1);  

dx_dt(2) = -((k1*x1*x(2))/(k2+x1))+(k3*x1*x1);   

dx_dt = dx_dt';    

return  


