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Abstract 

In this paper, we obtain the oremson modified Zagrebindex of Cartesian product, 

Strong product and Tensor product of graphs. Graph slike path and cycle are considered 

in this work. 
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1 Introduction 

In this article, we are concerned with simple graphs, that is finite and undirected graphs 

without loops or multiple edges. Let G be such a graph and V(G) and E(G) be its vertex set 

and edge set respectively. An edge of G, connecting the vertices u and v will be denoted by 

uv. The degree d(v) of a vertex vєV(G) is the number of vertex of G adjacent to v. The 
most elementary constituents of a (molecular) graph are vertices, edges, vertex-degrees, 

walks and paths[7]. They are the basis of many graph-theoretical invariants referred to as 

topological index, which have found considerable use in Zagreb index. The Modified first 

Index is denoted by  
m
M1(G), and defined as 𝑀1𝑚 (𝐺) = ∑ 1𝑑(𝑣)2𝑣∈𝑉(𝐺) .These have been conceived in the 1970s and 

found considerable applications in chemistry[2,5,6]. The Zagreb indices were subject to a large 

number of mathematical studies, of which we mention only a few nearest [3,4]. 

 

TheCartesian Product G□H is a graph such that, the vertex set of G□H is the Cartesian product 

V(G)×V(H) and two vertices (u,u′) and (v,v′) are adjacent in G□H if and only if either u=v and u′ 
is adjacent to v′ and u is adjacent to v in G. The Strong Product G☒H is the Cartesian product 

V(G)×V(H) and distinct vertices (u,u′) and (v,v′) are adjacent in G☒H if and only if either u=v and u′ is 
adjacent to v′ or u′=v′ and u is adjacent to v or u is adjacent to v or u is adjacent to v and u′ is adjacent to v′. The Tensor 

Product G×H of graphs G and H is a graph such that, the vertex set of G×H is the Cartesian product V(G)×V(H) and 

distinct vertices (u,u′) and (v,v′) are adjacent in G×H if and only if u is adjacent to v and u′ is 
adjacent to v′. 
All the definitions and notations in graphs and digraphs, which are not mentioned in this paper, 

one may refer[1].  

 

2MAIN RESULTS 

In this section, we obtain results on modified first Zagreb indices of Cartesian, strong and Tensor 

product of paths and cycles. 
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Theorem 1: 

The Modified first Zagreb index G of a Cartesian product of two path 𝑝𝑛 and 𝑝𝑚 𝑀1𝑚 (𝐺) = 9𝑛𝑚 + 14𝑛 + 14𝑚 + 52144  

 

Proof: 

 The Cartesian Product of two path 𝑝𝑛 and 𝑝𝑚 has 4 vertices of degree 

2,2n-4 vertices degree 3, 2m-4 vertices degree and 3(nm-2n-2m+4) vertices of 

degree 4, then the Modified first Zagreb index G is 𝑀1𝑚 (𝐺) = ∑ 1𝑑(𝑣)2𝑣∈𝑉(𝐺) . 

 

 =
422 + 

2𝑛−432  + 
2𝑚−432  + 

𝑛𝑚−2𝑛−2𝑚+442  

 =
44 + 

2𝑛−49  + 
2𝑚−49  + 

𝑛𝑚−2𝑛−2𝑚+416  

 

 =
144+(2𝑛−4)(16)+(2𝑚−4)(16)+(𝑛𝑚−2𝑛−2𝑚+4)(9)144  

  

=
144+32𝑛−64+32𝑚−64+9𝑛𝑚8𝑛−18𝑚+36144  

 

= 
9𝑛𝑚+14𝑛+14𝑚+52144  

  

 

 𝑝3 

 

 

 

 

 

 

 𝑝4 

 G□H 

Figure 1 

 

 

Theorem 2: 

The Modified first Zagreb index G of a strong product of two path 𝑝𝑛 and 𝑝𝑚 𝑀1𝑚 (𝐺) −225𝑛𝑚+702𝑛+702𝑚+269214400  

 

Proof: 

        The strong product of two path 𝑝𝑛 and 𝑝𝑚 has 4 vertices of degree 3,2n-4 vertices of degree 

5, 2m-4 vertices of degree 5 and (nm-2n-2m+4) vertices of 8, then the Modified first Zagreb index 
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G is 𝑀1𝑚 (𝐺) = ∑ 1𝑑(𝑣)2𝑣∈𝑉(𝐺) . 

= 
432 + 

2𝑛−452  + 
2𝑚−452  + 

(𝑛𝑚−2𝑛−2𝑚+4)82  

 

= 
49 + 

2𝑛−425  + 
2𝑚−425  + 

(𝑛𝑚−2𝑛−2𝑚+4)64  

 

= 
6400+(2𝑛−4)576+(2𝑚−4)+(𝑛𝑚−2𝑛−2𝑚+4)22514400  

 

=
225𝑛𝑚+702𝑛+702𝑚+269214400  

 

z  𝑝3   

 

 

 

 

 𝑝4 

 

 G☒H 

             Figure 2 

 

Theorem 3: 

             The Modified first Zagreb index G of a Tensor productof two path𝑝𝑛 and 𝑝𝑚 is 𝑀1𝑚 (𝐺)=𝑛𝑚+6𝑛+6𝑚+3616  

 

Proof: 

        The Tensor product of two path 𝑝𝑛 and 𝑝𝑚 has 4 vertices of degree 1, 2n-4 vertices of 

degree 2,2m-4 vertices of degree 2 and (nm-2n-2m+4) vertices of degree 4, then the Modified first 

Zagreb index G is 𝑀1𝑚 (𝐺) = ∑ 1𝑑(𝑣)2𝑣∈𝑉(𝐺) . 

 

         = 
412 + 

2𝑛−422  + 
2𝑚−422  + 

𝑛𝑚−2𝑛−2𝑚+442  

  

       = 
41 + 

2𝑛−44  + 
2𝑚−44  + 

𝑛𝑚−2𝑛−2𝑚+416  

 

       =
64+(2𝑛−4)4+(2𝑚−4)4+(𝑛𝑚−2𝑛−2𝑚+4)16  

 

       = 
𝑛𝑚+6𝑛+6𝑚+3616  
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 𝑝3 

 

 

 

 

 

 

Theorem 4: 

The Modified first Zagreb index G of a Cartesian product of two cycle 𝑐𝑛  and 𝑐𝑚  is 𝑀1𝑚 (𝐺)=𝑛𝑚16  

Proof: 

          The Cartesian product of two cycle 𝑐𝑛  and 𝑐𝑚  has nm vertices of degree 4, then the Modified first 

Zagreb index G is 𝑀1𝑚 (𝐺) = ∑ 1𝑑(𝑣)2𝑣∈𝑉(𝐺)  

               =
𝑛𝑚42  

=
𝑛𝑚16 . 

 

 

Theorem 5: 

The Modified first Zagreb index G of a strong product of two cycle 𝑐𝑛  and 𝑐𝑚is 𝑀1𝑚 (𝐺)=225𝑛𝑚+350𝑛+350𝑚+90014400  

Proof: 

         The stong product of two cycle 𝑐𝑛  and 𝑐𝑚  has 4 vertices of degree 5, 2n-4 vertices of degree 6, 2m-4 

vertices of degree 6 and (nm-2n-2m+4) vertices of degree 8,b then the Modifies first Zagreb index G is 𝑀1𝑚 (𝐺) = ∑ 1𝑑(𝑣)2𝑣∈𝑉(𝐺)  

  

=
452 + 

2𝑛−462  +  
2𝑚−462  + 

𝑛𝑚−2𝑛−2𝑚+482  

=
425+ 

2𝑛−436 +  
2𝑚−436 + 

𝑛𝑚−2𝑛−2𝑚+464  

  

=
2304+(2𝑛−4)400+(2𝑚−4)400+(𝑛𝑚−2𝑛−2𝑚+4)22514400  

 

=
2304+800𝑛−1600+800−1600+225𝑛𝑚−450𝑛−450𝑚+180014400  

 

=
225𝑛𝑚+350𝑛+350𝑚+90014400  
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Theorem 
6: 

The modified first Zagreb index G of a tensor product of two cycle 𝑐𝑛  and 𝑐𝑚  is 𝑀1𝑚 (𝐺)=𝑛𝑚+6𝑛+6𝑚+3616  

Proof: 

       The Tensor product of two cycle 𝑐𝑛  and 𝑐𝑚  has 4 vertices of degree 1, 2n-4 vertices of degree 2,2m-4 

vertices of degree 2 and (nm-2n-2m+4) vertices of degree 4, then the modified first Zagreb index G is   𝑀1𝑚 (𝐺) =∑ 1𝑑(𝑣)2𝑣∈𝑉(𝐺)  

 

=
412 + 

2𝑛−422  +  
2𝑚−422  + 

𝑛𝑚−2𝑛−2𝑚+442  

 

=
41 + 

2𝑛−44  +  
2𝑚−44  + 

𝑛𝑚−2𝑛−2𝑚+416  

=
64+(2𝑛−4)4+(2𝑚−4)4+(𝑛𝑚−2𝑛−2𝑚+4)416  

=
64+8𝑛−16+8𝑚−16+𝑛𝑚−2𝑛−2𝑚+416  

=
𝑛𝑚+6𝑛+6𝑚+3616  

 

Theorem 7: 

The Modified first Zagreb index G of a Cartesian product of path 𝑝𝑛  and cycle 𝑐𝑚is 𝑀1𝑚 (𝐺)=9𝑛𝑚+14𝑚144  

 

Proof: 

     The Cartesian product of of path 𝑝𝑛  and cycle 𝑐𝑚has 2m vertices of degree 3 and (nm-2m) vertices 

of degree 4, then the Modified first Zagreb index G 

is 𝑀1𝑚 (𝐺) = ∑ 1𝑑(𝑣)2𝑣∈𝑉(𝐺)  

  =
2𝑚32  + 

𝑛𝑚−2𝑚42  

=
2𝑚9 + 

𝑛𝑚−2𝑚16  

 

=
32𝑚+(𝑛𝑚−2𝑚)9144  

 

=
32𝑚+9𝑚−18𝑚144  

=
9𝑛𝑚−14𝑚144  

 

Theorem 8: 

     The Modified first Zagreb index G of a strong product of path 𝑝𝑛  and cycle 𝑐𝑚is 𝑀1𝑚 (𝐺)=225𝑛𝑚+350𝑛+720𝑚+59614400  

 

Proof: 

       The Strong Product of path 𝑝𝑛  and cycle 𝑐𝑚  has 4 vertices of degree 4,(2n-4) vertices of degree 6, 
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(2m-4) vertices of degree 5 and (nm-2n-2m+4) vertices of degree 8, then the Modified first Zagreb index G is 𝑀1𝑚 (𝐺) = ∑ 1𝑑(𝑣)2𝑣∈𝑉(𝐺)  

           = 
422 + 

2𝑛−462  +  
2𝑚−452  + 

(𝑛𝑚−2𝑛−2𝑚+4)82  

            =
416 + 

2𝑛−436  +  
2𝑚−425  + 

(𝑛𝑚−2𝑛−2𝑚+4)64  

 

         =
4(900)+(2𝑛−4)400+(2𝑚−4)576+(𝑛𝑚−2𝑛−2𝑚+4)22514400  

 

        =
3600+800𝑛−1600+1152𝑚−2304+225𝑛𝑚−450𝑛+450𝑚+90014400  

 

        =
225𝑛𝑚+350𝑛+702𝑚+59614400  

 

Theorem 9: 

The Modified first Zagreb index G of a Tensor product of  path𝑝𝑛  and cycle 𝑐𝑚is M1m (G)=nm+6n+6m+3616  

 

Proof: 

        The Tensor product of path 𝑝𝑛  and cycle 𝑐𝑚has 4 vertices of degree 1,2n-4 vertices of degree 

2,2m-4 vertices of degree 2 and (nm-2n-2m+4) vertices of degree 4, then the Modified first Zagreb index G is 𝑀1𝑚 (𝐺) = ∑ 1𝑑(𝑣)2𝑣∈𝑉(𝐺)  

=
412 + 

2𝑛−422  +  
2𝑚−422  + 

(𝑛𝑚−2𝑛−2𝑚+4)42  

=
41 + 

2𝑛−44  +  
2𝑚−44  + 

(𝑛𝑚−2𝑛−2𝑚+4)16  

 

=
64+(2𝑛−4)4+(2𝑚−4)4+(𝑛𝑚−2𝑛−2𝑚+4)16  

 

=
64+8𝑛−16+8𝑚−16+𝑛𝑚−2𝑛−2𝑚+416  

 

=
𝑛𝑚+6𝑛+6𝑚+3616  

 

3 CONCLUSION 

In this paper,modified first Zagreb index of product of graphs are obtained. This index 

can be used as a numerical description in comparision with chemical,physical and 

biological parameters to study about its relationships. 
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