Anaesthetic management of adrenal tumours presenting with combination of rare syndromes during a pandemic: experience from a tertiary cancer care centre in Northeast India.

Running title: anaesthetic management in adrenal tumour surgery

1. **Dr.Sonai Datta Kakati,**MBBS,DA,DNB ANAESTHESIOLOGY,IDDCM. Assistant Professor, Department of Anaesthesiology,Critical Care and Pain, Dr . B. Borooah Cancer Institute, Guwahati,Assam, India.

Address: House No.27, Shiva Nagar Path, Ghoramara, Beltola, Guwahati, Assam 781028, India. EMaili.d :datta.sonai@gmail.com. Mobile no. 9435342691

 Dr. Biplob Borthakur, MBBS, MD, EDAIC, FRCA. Consultant, Anaesthetics, Queen Elizabeth the Queen Mother Hospital, East Kent Hospitals University Foundation trust, Margate, Kent, UK CT9\$AN.

Email i.d.: dr.biplob@yahoo.com. Phone-+447884591153

3. **Dr.Barnali Kakati**, MBBS, MD ANAESTHESIOLOGY. Assistant Professor, Department of Anaesthesiology,Critical Care and Pain, Dr.B.Borooah Cancer Institute, Guwahati, Assam, India. Address: House no. 21,KaliramMedhi Road,Ranibari,Panbazar,Guwahati-01, Assam, India. Email i.d:barnalikakati01@gmail.com. Mobile No. 8638408439

4. Dr. Marie Ninu, MBBS, MD ANAESTHESIOLOGY. Assistant Professor, Department of

- Anaesthesiology, Critical Care and Pain, Dr. B. Borooah Cancer Institute, Guwahati, Assam, India. Address: Dr. B BorooahCancer Institute, A.K.Azad Road,Guwahati -16,Assam, India Email i.d.:marie.ninu@yahoo.com. Mobile No. 8575298702
 - Dr. Dokne Chintey, MBBS, MD Anaesthesiology. Assistant Professor, Department of Anaesthesiology, Critical Care and Pain, Dr.B.Borooah Cancer Institute, Guwahati, Assam. Address: 3rd Floor, Reeshan Enclave, GMCH Hostel Road, Bhangagarh, Guwahati – 05, Assam,

India.

Email i.d: drdokne@gmail.com. Mobile No - 8824013912

Corresponding author:

Dr.Marie Ninu,MBBS, MD Anaesthesiology. Assistant Professor, Department of Anaesthesiology,Critical Care and Pain, Dr . B. Borooah Cancer Institute, Guwahati,Assam Address: Dr. B BorooahCancer Institute, A.K.Azad Road,Guwahati -16,Assam, India Email i.d.:<u>marie.ninu@yahoo.com</u>. Mobile No. 8575298702

Abstract:

Background and Aims: Perioperative management of functional adrenal tumours is resource intensive. Due to the covid 19 pandemic, there has been sizeable delay in preparing and conducting these time sensitive surgeries.Quality of care and resource utilisation may worsen. This retrospective review was aimed at finding if care quality deteriorated due to covid 19 related restrictions, from anaesthetic perspective.

Methods:Three cases of hormone-secreting adrenal tumours operated during a two year period in a tertiary cancer centre in India were retrospectively reviewed.Summary of the demographic profile, tumour characteristics, and the perioperative care were described using tables and analysed in the discussion.

Results: Out of the three cases operated for adrenal gland tumour, pheochromocytoma tumour type with distant metastasis had prolonged hospital stay. One patient developed covid 19 infection in hospital. Cases were adequately managed during the perioperative period and the covid 19 related constraints didn't affect the quality of care.

Conclusion:As in any other major surgery, adhering to a unique checklist, multidisciplinary approach, clear communication, knowledge sharing and establishing a care pathway helps to maintainquality care in high risk cases and at times of crisis.

Key Words: adrenal glands, anesthesia, neoplasm, case management, surgery

Introduction

Anaesthetic management of adrenal gland surgery for hormone secreting tumours is a challenging task. Hormonesecreting adrenal tumours are infrequently met with. Theypresent aseither benign or malignant and are associated with a high risk of perioperative complications. The risk of acute complications perioperatively due to catecholamine surge from the tumours during physiological stress, drugs, surgical handling of the tumour, and from sudden decrease in catecholamine level on tumour removal. Mortality due to cardiovascular causes is high inthe perioperative period, with almost half thedeaths in pheochromocytoma occurring during induction of anaesthesia or during surgery for other causes. [1] These can be minimised by careful preoperative evaluation and optimisation, performing minimally invasive surgeries and byproper anaesthetic management have reduced the mortality rate to 0 to 3% and chances of complications to 5% to 22%.[3]Perioperative management of adrenal tumours demands intensive resource management and close co-ordination between multiple clinical and non-clinical departments.

The covid 19 pandemic required additional measures on scheduling and planning of these time sensitive surgeries. In this retrospective study, we reviewed three patients with adrenal tumours and associated hormonal syndromes, operated during the pandemic in a tertiary care centre in North East India, with the aim of finding how the pandemic has impacted the delivery of standard care, from the perspective of the anaesthesiologist.

Materials and Methods:

A retrospective study was conducted on three cases of adrenal tumours operated between01/01/2020 to 31/12/2021 in a tertiary cancer centre in North-East India. A comprehensive review of the physical case records and the electronic medical record system was done and data was collected and presented in tables. The collected data included the clinical and demographic picture, the radiological, biochemical and pathological characteristics of the tumours, details pertaining to the preoperative, intraoperative and postoperative period and the follow up period. (Table 1, 2)

Preoperative management:

After pre-anaesthetic checkup(PAC), optimisation was done in all three cases with a multidisciplinary approach involving the endocrinologist, surgeon, anaesthesiologist and others. Preoperatively, antihypertensive therapy with sequential alpha blocker agent followed by beta blockers and additional antihypertensives were started and circulating volume status and nutrition wereoptimised. Active chest physiotherapy and deep breathing exercises were encouraged to minimise hospital stay.

Preoperative care bundle included withholding ACEI (angiotensin converting enzyme inhibitor) and ARB (angiotensin receptor blocker) 24 hours before surgery and continuation of other antihypertensives till morning of surgery. Covid related standard operating procedure (SOP) included preoperative RT-PCR (reverse transcriptase – polymerase chain reaction) test on admission and segregation of elective surgery patients.

Hydrocortisone i.vwas started from the time of operation until allowed orally and thereafter fludrocortisone and hydrocortisone were given.

Anaesthetic management:

For all three cases, difficult airway cart, syringe pumps, antihypertensive drugs like Nitro-glycerine (NTG), labetalol, magnesium sulphate, and vasopressors (vasopressin, noradrenaline) werekept ready.

In addition to standard ASA (American society of Anaesthesiology) monitoring, invasive arterial blood pressure monitoring was done. Peripheral venous access was secured with two wide bore cannulae, epidural catheter was inserted at thoracic 10-11 interspace, and induction of anaesthesia was done with titrated doses of injection propofol I.V., injection tramadol 100mg I.V. and injection vecuronium0.1 mg per kg I.V.

Ramp position was used and air mattress was madeavailable. Tracheal intubation was done in single attempt in all three casesand haemodynamic response was smooth owing to prior injection of lignocaine 2% 1.5 mg per kg iv. Anaesthesia was maintained with oxygen, nitrous oxide and isoflurane. Neuromuscular blockade was not monitored due to non-availability of neuromuscular monitoring device. Ropivacaine 0.2% 5 ml/h via epidural catheter was started 30 minutes after induction of general anaesthesia.Ultrasound guided right sided internal jugular vein was cannulated post induction and fluid warmers and warming blankets were used.

Epidural catheter was inserted after three attempts in the second patient due to obesity. Intraoperative arterial blood gas analysis was done at regular intervals. Intraoperative events are described in table 3.

Post operative management:

Deep venous thrombosis prophylaxis with stockings was started on day of surgery and low molecular weight heparin (LMWH) was started one day after. Patients were mobilised out of bed on POD 2. Epidural catheter was removed on POD 2 taking into consideration the last dose of LMWH. There were no complications relating to epidural catheterization or vascular access.

The first case developed mild covid infection on post operative day 3 and was managed conservatively.

Case two had a complicated course with excessiveblood loss, long duration of surgery, hypotension requiring inotropic support and hypertension on POD 1 which required nitro-glycerine (NTG) infusion.Epidural infusion was stopped due to hypotension. Post operatively, shewas deliberately kept intubated due to unstable haemodynamics.

She hadbreathing difficulty and decreased oxygenation on POD 2 due to bilateral pleural effusion with hypoalbuminaemia, necessitating the need of NIV (non-invasive ventilation) and B/L intercostal drainage (ICD). She was discharged from ICUon POD7 and stayed in hospital for 15 days. Her final histopathological diagnosis showed pheochromocytoma with high malignant score. She had lung and liver metastasis and later received chemotherapy in the same institute. She had drastic weight loss in follow up and was finally weaned off the antihypertensive.

Case 3 had an uneventful perioperative period.

Discussion:

The anaesthetic management of adrenalectomy is challenging. Various factors influence the perioperative decision making and planning. (Table 4)Rehabilitation is an important aspect of care and should be plannedpreoperatively to begin from the immediate post-operative period. Co-existingcovid 19 infection being relevant in the current scenario considerably increases morbidity and mortality after major surgery.

The most common syndromes associated with adrenocortical tumours in adults are hyperaldosteronism, Cushing's syndrome, less commonly virilization and sometimes combination of any of these syndromes. Cushing's syndrome occurs in 15% of primary adrenal tumours. [4] The occurrence of perioperative complications in adrenal gland surgery varies from 1.7% to 30.7% in the medical literature. [5]

Anaesthetic problems with associated syndromes especially with Cushing's syndrome are mainly faced because of obesity, and associated features of steroid hormone access and end organ dysfunction. (Table 5)

High BMI entailslogistical support. Theatre table and ward bed must be capable of bearing patient weight, and moving equipment like pat slide or pneumatic moving device may be necessary to avoid patient and staff injury. Air mattress helps prevent pressure injury in long surgeries. Surgical equipment and monitoring equipment for large patients will be necessary. Difficult airway, obstructive sleep apnoea, restrictive lung disease and low functional residual capacity (FRC) from obesity make them prone to rapid desaturation.Devices for adequate ramping like Oxford pillow and additional airway equipment may be required. High flow oxygen therapy and video laryngoscope can be used electively to prolong duration of apnoeic oxygenation and reduce the time for laryngoscopy and intubation. Rapid sequence induction is preferred as gastro oesophageal reflux is common.

Patients with Conn's syndrome present with symptoms of hyperaldosteronism, manifesting as systemic hypertension, metabolic alkalosis, hypokalaemia, hypocalcaemia, hypernatremia and associated fatigue, muscle cramps, and skeletal muscle weakness. (Table 6)

Hyperventilation during anaesthesia can aggravate the alkalosis, hypokalaemia and hypocalcaemia and should be avoided. Sevoflurane can cause polyuria and may be avoided. [7]

Out of all the functional tumours, pheochromocytomacan cause more blood loss needing inotropes andhaemodynamic fluctuations and other complications post operatively. 50% of pheochromocytoma patients have severe hypertension refractory to conventional treatment contributing to0.1% of hypertensive population.[8]About 5% to 15% of tumours do not cause hypertension.[10]Paroxysmal or sustained hypertension, tachyarrhythmias, and ectopic discharges in electrocardiograph (ECG) may also be seen in pheochromocytoma. About 30% of these patients have left ventricular dysfunction due to catecholamine induced cardiomyopathy. [12]

Familial causes and associated syndromes (neurofibromatosis 1, multiple endocrine neoplasia type 2, and von Hippel–Lindau syndrome) are present in 25% of pheochromocytomas and these need to be looked for in preassessment.[9] These are associated with additional neurological defects, malignancies and thyroid dysfunction.15-17% of pheochromocytomas develop metastatic disease and in about 11-31% of cases, itpresents as the initial diagnosis. These patients have more adverse complications and bleeding intraoperatively. Currently available therapeutic options are surgical debulking, treatment with radiopharmaceuticals (I-MIBG, Y and Lu-DOTATATE), chemotherapy and targeted therapy.[11]

Undiagnosed pheochromocytoma or inadequately prepared patient may develop hypertensive crisis leading to about 80% mortality.[13]Adequate preoperative preparation with α blockers is traditionally given which can reduce perioperative mortality from 45% to 0-3%. Alpha blockade is the mainstay of medical management as it helps to control blood pressure, increase the intravascular volume, prevents hypertensive episodes, reduces myocardial dysfunction and allows desensitization of adrenergic receptors.[14]Invasive haemodynamic monitoring is invariably required ashaemodynamic fluctuations are frequently seen even inadequately prepared patients.(Table 7)

 β blocker should never be used before α blockade as unopposed α activity may result in life threatening hypertensive crisis.[17] Adequate pre-operative α -blockade has been proven to reduce the number of peri-operative complications to less than 3%. It is important to start appropriate therapy in all patients with pheochromocytoma and paraganglioma, even if they have normal levels of catecholamines.[16] The morning dose is withheld on the day of the operation tominimize postoperative hypotension.

Either intravenous nitroprusside or phentolamine is effective in management of severe hypertensive crisis, but can cause excessive tachycardia. In such cases labetalol, which is a combined alpha and beta receptor blocker, is more effective. A sudden drop in catecholamine levels at tumour ligation can precipitate hypotension and hypoglycaemia, warranting infusion of two to three litres of crystalloids prior to this. Severe hypotension after tumour removal can be prevented with high sodium diet and fluid intake, as recommended by the endocrine society practice guidelines. [18] The preoperative fluid volume status can be evaluated by the presence of orthostatism, increased heart rate, blood pressure,

increased haematocrit, by ultrasound guided inferior vena cava compressibility index monitoring and use of advanced haemodynamic monitoring such as Flo TracTM with cardiac output monitoring intraoperatively to assess the need of fluids and vasopressors. Adrenal suppression induces hypotension, decreased cardiac output, hyponatremia, and hypoglycaemia. It is mandatory to control and monitor cortisol level preoperatively. Etomidate must be avoided because it interferes with cortisol synthesis.[19] Apart from the expertise of the surgeon to minimise the handling of the tumour during surgery, intraoperative stimulation of the adrenal gland has the potential risk of unexpected catecholamine surge, resulting in severe hypertension even if the neuroendocrine function of the adrenal gland is normal.[20]A hoard of drugs should be avoided or used with caution in these patients. (Table 8)

Preoperatively, patients are advised to avoid strenuous physical activities, smoking, and alcohol consumption. Use of combined epidural-general anaesthesia has been found to decrease the occurrence of postoperative complications, decrease the stress response and hormonal fluctuations in patients undergoing open surgery for pheochromocytoma.[21]Anaesthesia plane should be deep. Direct sympathomimetics like dopamine or alpha-adrenergic agents like noradrenaline or phenylephrine in higher doses may be required to treat hypotension because of the alpha receptor blockade. Vasopressin may be useful in refractoryhypotension. Labetalol is advantageous for blood pressure control in epinephrine secreting tumours because of its predominant beta action. Dysrhythmias should be treated with appropriate antiarrhythmics like esmolol, amiodarone or adenosine. Blood loss management, temperature regulation, multimodal analgesia should be done as in any other major surgery. Blood sugar must be monitored frequently and for at least next 24hours.

Post-operatively morbidity associated with adrenalectomy has been found to be as high as 40%, and mortality approximately 2% to 4%.[25]The morbidity is usually due to organ injuries, infection, thromboembolism, or adrenal insufficiency. Common causes of mortality are myocardial infarction, pulmonary embolism, sepsis or worsening of underlying disease.

Intraoperative death, although a rare intraoperative complication, occurs due to severe blood loss, usually from an injury to the inferior vena cava, aorta, or pancreas.[26] Patients' age, comorbidities, BMI, tumour size and pathological diagnosis were found to be independent predictors of post-operative complications.[27]

Perioperative infection with covid 19 is a new dimension to perioperative care, and can have serious consequences. All measures at infection prevention, as stipulated by local authorities and hospital infection control committee should be adhered to, and efforts made to minimise patients physical contact with healthcare system.

Conclusion:

We adhered to a predefined clinical pathway which helped in the successful management of these cases. Most of the recommendations and evidence based guidelines were followed by using a checklist containing the essential points of management. Using similar checklists by surgical teams and in post-operative will be beneficial. Some of the ideal management strategies could not be implemented due to local logistical restraints and covid 19 related additional constraints.

In addition to individual knowledge and skill, a multidisciplinary team approach with knowledge sharing and team meetings helps in the overall management. Establishing regional centres of referral can increase patient load and experience of such centres, improving patient care as well as creating training possibilities of clinicians.

Covid 19 pandemic has put an additional burden for patients visiting health care facilities. However it is essential to continue with medical and surgical care of time sensitive treatments like cancer surgery, albeit at a higher risk of simultaneous covid infection in hospital.

Communication and information to patients, following a 'green pathway' for care of elective patients, as well as education of health care workers can reduce the possibility to certain extent.

References:

1. Sutton MG, Sheps SG, Lie JT (1981) Prevalence of clinically unusual pheochromocytoma: Review of a 50-yearautopsy series. Mayo Clin Proc 56:354–60.

2.Plouin PF, Duclos JM, Soppelsa F, Boublil G, Chatellier G. Factors associated with perioperative morbidity and mortality in patients with pheochromocytoma: analysis of 165 operations at a single center. J Clin Endocrinol Metab. 2001 Apr;86(4):1480-6. doi: 10.1210/jcem.86.4.7392.

3.Ulchaker JC, Goldfarb DA, Bravo EL, Novick AC. Successful outcomes in pheochromocytoma surgery in the modern era. J Urol. 1999 Mar;161(3):764-7. PMID: 10022680.pheochromocytoma: Review of a 50-year autopsy series.Mayo Clin Proc 56:354–60

4. Harza MC, Preda AT, Ismail G, et al. Extent and type of surgery in adrenal masses. Acta Endo (Buc) 2014; 10: 404-13 doi: 10.4183/aeb.2014.404

5. Etxabe J, Vazquez JA. Morbidity and mortality in Cushing's disease: an epidemiological approach. Clin Endocrinol (Oxf). 1994 Apr;40(4):479-84. doi: 10.1111/j.1365- 2265.1994.tb02486.x. PMID: 8187313

6. Domi R. Cushing's surgery: Role of the anesthesiologist. Indian J Endocrinol Metab. 2011 Oct;15 Suppl 4(Suppl4):S322-8. doi: 10.4103/2230-8210.86975. PMID: 22145135; PMCID: PMC3230103 7. Schirle L. Polyuria with sevoflurane administration: a case report. AANA J. 2011 Feb;79(1):47-50. PMID: 21473226

8. Bravo EL1 (1991) Pheochromocytoma: new concepts and future trends. Kidney Int 40: 544-556

9. Neumann HP, Bausch B, McWhinney SR, Bender BU, Gimm O, Franke G, Schipper J, Klisch J, Altehoefer C, Zerres K, Januszewicz A, Eng C, Smith WM, Munk R, Manz T, Glaesker S, Apel TW, Treier M, Reineke M, Walz MK, Hoang-Vu C, Brauckhoff M, KleinFranke A, Klose P, Schmidt H, Maier-Woelfle M, Peçzkowska M, Szmigielski C, Eng C; Freiburg-Warsaw-Columbus Pheochromocytoma Study Group. Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med. 2002 May 9;346(19):1459-66. doi: 10.1056/NEJMoa020152. PMID: 12000816

10.Manger WM. The protean manifestations of pheochromocytoma. HormMetab Res. 2009 Sep;41(9):658-63. doi: 10.1055/s-0028-1128139. Epub 2009 Feb 25. PMID: 19242899

11. Corssmit EPM, Snel M, Kapiteijn E. Malignant pheochromocytoma and paraganglioma: management options. CurrOpin Oncol. 2020 Jan;32(1):20-26. doi: 10.1097/CCO.000000000000589. PMID: 31599769.

12. Hull CJ (1986) Pheochromocytoma: diagnosis, pre-operativepreparation, and anesthetic management. Br JAnaesth 58:1453–68

13. Myklejord DJ. Undiagnosed pheochromocytoma: the anesthesiologist nightmare. Clin Med Res 2004;2:59-62

14. Bravo EL. Pheochromocytoma. Hines, Marschall, editors. Stoelting's Anesthesia and Co-existing Diseases. 5th ed, Churchill Livingstone, AnImprint of Elsevier; Philadelphia, 978-1-4160-3998-3.

15. Weingarten TN, Cata JP, O'Hara JF, Prybilla DJ, Pike TL, Thompson GB, Grant CS, Warner DO, Bravo E, Sprung J. Comparison of two preoperative medical management strategies for laparoscopic resection of pheochromocytoma. Urology. 2010 Aug;76(2):508.e6-11. doi: 10.1016/j.urology.2010.03.032. Epub 2010 May 23. PMID: 20546874

16.Goldstein RE, O'Neill JA Jr, Holcomb GW 3rd, Morgan WM 3rd, Neblett WW 3rd, Oates JA, Brown N, Nadeau J, Smith B, Page DL, Abumrad NN, Scott HW Jr. Clinical experience over 48 years with pheochromocytoma. Ann Surg. 1999 Jun;229(6):755-64; discussion 764-6. doi: 10.1097/00000658-199906000-00001. PMID: 10363888; PMCID: PMC1420821

17. L, Jovanovic Sibal A, Agarwal SC, Peaston RT, James RA, Lennard TW, Bliss R, Batchelor A, Perros P. Phaeochromocytomas presenting as acute crises after beta blockade therapy. Clin Endocrinol (Oxf). 2006 Aug;65(2):186-90. doi: 10.1111/j.1365-2265.2006.02571.x. PMID: 16886958.

18. Lenders JW, Duh QY, Eisenhofer G, Gimenez-Roqueplo AP, Grebe SK, Murad MH, Naruse M, Pacak K, Young WF Jr; Endocrine Society. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014 Jun;99(6):1915-42. doi: 10.1210/jc.2014-1498. PMID: 24893135.

19. Absalom A, Pledger D, Kong A. Adrenocortical functioning critically ill patients 24 h after a single dose of etomidate. Anaesthesia. 1999;54(9):861-867

20. Doo AR, Son JS, Han YJ, Yu HC, Ko S. Hypertensive crisis caused by electrocauterization of the adrenal gland during hepatectomy. BMC Surg. 2015 Feb 14;15:11. doi: 10.1186/1471-2482-15-11. PMID: 25972017; PMCID: PMC4429467.,

21. Li N, Kong H, Li SL, Zhu SN, Wang DX. Combined epidural-general anesthesia was associated with lower risk of postoperative complications in patients undergoing open abdominal surgery for pheochromocytoma: A retrospective cohort study. PLoS One. 2018 Feb 21;13(2):e0192924. doi: 10.1371/journal.pone.0192924. PMID: 29466473; PMCID: PMC5821342

22. Vater M, Achola K, Smith G. Catecholamine responses during anaesthesia for phaeochromocytoma. Br J Anaesth. 1983 Apr;55(4):357-60. doi: 10.1093/bja/55.4.357. PMID: 6838749

23. Hariskov S, Schumann R. Intraoperative management of patients with incidental catecholamine producing tumors: A literature review and analysis. J Anaesthesiol Clin Pharmacol. 2013 Jan;29(1):41-6. doi: 10.4103/0970-9185.105793. PMID: 23493174; PMCID: PMC3590540

24. Yusa T, Sasara T, Taira Y, Shiroma H, Shimabukuro H. The anesthetic management for adrenalectomy of a patient with Cushing's syndrome in pregnancy]. Masui. 1992 Jul;41(7):1168-74. Japanese. PMID: 1495188

25.Scott HW Jr, Liddle GW, Mulherin JL Jr, et al. Surgical experience with Cushing's disease. Ann Surg. 1977;185:524-534

26. McLeod, Michael. (1991). Complications following adrenal surgery. Journal of the National Medical Association. 83. 161-4.

27. Srougi V, Barbosa JAB, Massaud I, Cavalcante IP, Tanno FY, Almeida MQ, Srougi M, Fragoso MC, Chambô JL. Predictors of complication after adrenalectomy. Int Braz J Urol. 2019 May-Jun;45(3):514-522. doi: 10.1590/S1677-5538.IBJU.2018.0482. PMID: 31038857; PMCID: PMC6786121.

Table 1:Description of clinicodemographic profile of cases, associated syndromes and comorbidities, airway assessment, past history, personal history and their optimisation.

Cases	Airway	Allergy/reflux/smokin	Syndro	Surgery/anaes	Comorbiditie	Optimisati
	assessmen	g/alcohol	mes	thesia	S	on
	t					
Case	MPG [‡] 3,T	No allergy, no	Features	Nil	Hypertension	Was on
1,27F,	MD§	past history, reflux	of		,H/O intra	spironolac
110kg,	< 6cm,	present, non-smoker,	Cushing		uterine fetal	tone that
150cm	$MO^{I} 2$ and	non-alcoholic	's		death three	was
(BMI^*)	half		syndrom		times	stopped
49),AS	fingers,		e, moon			few days
A^{\dagger}	obesity		facies,			before
II			hirsutis			surgery,
			m.no			chest
			surgery,			physiother
			history			apy
			of			
			snoring			
			at			
			night.			
Case	MPG III,	No allergy, no past h/o	Moon	Nil	hypertension	Prazosin,
2,44F,	MO 3	surgery or anaesthesia,	facies,			metoprolo
150cm	fingers,	reflux and acidity	hirsuitis			1,
(BMI	TMD 3	present, non-smoker,	m,			telmisarta
49),	fingers	non-alcoholic	obesity,			n,
ASA			history			amlodipin

III			of snoring at night.			e, chest physiother apy, cardiology
						and endocrine
Case 3, 34F, 150cm (BMI 42) 95 kg ASA II	airway examinati on normal	none	none	Nil	none	Chest physiother apy

*BMI-body mass index

†ASA - American society of Anaesthesiology

‡MPG -Mallampatti grade

§TMD- thyromental distance,

MO- mouth opening

Table 2: The different symptoms, provisional and final diagnosis of the tumours, investigations and their associated syndromes.

	J						
Cas	Initial diagnosis	Special and	Symptoms	2DEcho/	Routi	General	Final diagnosis
e	(CT abdomen)	case		ECG/	ne	examinati	(histopathology
no.	and syndrome, if	specific		CXR	blood	on)
	any	tests			tests		
1	Paraganglioma	S.metaneph	Facial	$EF^{*}-68\%$	Norm	Normal	Adrenal
	8*9*8cm	rine-5.86.	puffiness	,diastolic	al		adenoma
	swelling,	24 hr urine	1year,body	dysfuncti			
	Cushing's and	Norepineph	ache	on grade			
	Conn's syndrome	rine-5.06.		1,ECG			
	present	high		and CXR			
		cortisol,		normal			
		normal					
		renin and					
		high					
		aldosterone					
		Epinephrin					
		e-3.4					
2	13*8*12cm	High	Flushing,	EF -68%,	norma	Bilateral	Pheochromcoyt
	swelling	cortisol	headache,	diastolic	1	pedal	oma
	pheochromocyto		lower	dysfuncti		oedema	
	ma			on grade		present	
	With hepatic and			II,concent		METS [†] <	
	lung metastasis,			ric left		4	
	Cushing's			ventricula			
	syndrome			r			
	-			hypertrop			

				hy			
2	Dhaashusussarta	2.4hr uning	Donomono 1	EE (00/		Nothing	A dramal a artical
3	Pheochromocyto	24nr urine	Paroxysmai	EF -00%,	norma	Nothing	Adrenal cortical
	ma 7*8*6cm.no	metanephri	headache,dizzi	rest	1	significan	adenocarcinom
	syndrome present	ne	ness 2 years,	normal,		t	a
		47ug/24h.	palpitation	ECG			
		Cortisol		normal			
		5.21ug/dl.					
		Rennin act-					
		18.3uIU/ml					
		Prolactin-					
		42 (h)ng/ml					
		Aldosteron					
		e-4ng/dl					

* EF – ejection fraction

†MET - Metabolic equivalent

Table 3: The duration of surgery,	total intravenous	fluids and blood	products	transfused,	blood loss,
urine output and tracheal extubati	on status and post-	operative complie	cations.		

Case	Durati	Bloo	IV^*	Urine	Blood	Events	Extubati	Use of	Post operative
s	on	d loss	flui	outpu	produc		on	inotrope	complications
	of		d	t	ts			S	
	surger								
	у								
Case	4 h	650m	3L	150m	1unit	Persistent	extubate	none	Poor breathing
1		L		L	PRBC	tachycardia	d		effort, need of
					† ,				NIV [‡] , post
					250m				operative
					L				covid infection
Case	5h	4 L	5.7	800m	4	Noradrenal	Not	Continu	Post op
2			L	1	PRBC,	ine up to	extubate	ed till	hypertensionp
					4 FFP [§]	10ml/h	d	post op	od1, pleural
					and 4			day 2	effusion
					platele				B/LICD ^I , need
					ts				of NIV
Case	4.5h	1 L	4L	150m	1 unit	uneventful	extubate	none	uneventful
3				1	PRBC		d		
					250ml				

*IV - Intravenous, †PRBC - packed red blood cells, ‡ NIV – non invasive ventilation, §FFP - fresh frozen plasma, IICD – intercostal drain

Table 4: Various factors influencing the perioperative decision making and planning

Factors affecting perioperative decision making	
Patient related	
Age, frailty, body mass index, comorbidities	
Tumour related	

 Type, size, grade, left or right sided, extra adrenal, hormone secreting

 Surgical related

 Surgical skill, unilateral or bilateral surgery, patient positioning, approach (open or laparoscopic),

 expected blood loss, duration of surgery

 Anaesthesia related

 Airway, vascular access, possible haemodynamic crisis, likely post-operative complications, pain

 management, post-operative nausea and vomiting

 Additional issues

 Nosocomial infection prevention, COVID 19 protocols

 Rehabilitation

T 11 C	C1' ' 1	C ,	1 .	, •	• 1	, · ·	C 1 · ·	1
I able 5:	Clinical	features and	nd perio	perative	considera	tions 11.	n Cushing'	s syndrome.

Cushing's syndrome			
Clinical feature	Perioperative consideration		
High BMI	Appropriate theatre table, equipment for moving		
	patients, anaesthetic and surgical equipment		
	appropriate for large patients		
Airway, lung disease and oxygenation	Difficult airway, sleep apnoea syndrome, restrictive		
	lung disease, rapid desaturation with apnoea		
Acid reflux disorder	Aspiration prophylaxis		
Insulin resistance, dyslipidaemia	Insulin therapy, lipid lowering agents		
Immune dysfunction	Infection prevention		
Osteoporosis, fragile skin	Prevention of fractures and skin breaks/injury during		
	positioning for surgery		
Proximal myopathy	Increased sensitivity to muscle relaxants		
End organ damage to heart, brain, kidney,	Focused clinical review for detection. ECG,		
eyes from hypertension, dyslipidaemia,	fundoscopy, renal function test, echocardiography as		
high blood sugar	baseline tests, preoperative optimisation where		
	possible.		
Deep venous thrombosis	DVT prophylaxis-low molecular weight heparin		
	(LMWH), stocking, caff compression device, early		
	mobilisation		

Table 6:Metabolic defects and perioperative considerations in Conn's syndrome.

Conn's syndrome	
Metabolic defect	Perioperative consideration
Hypokalaemia	Prolonged action of muscle relaxants, reduced
	physiological response to hypovolaemia,
	supraventricular and ventricular arrhythmias
Alkalosis, hypocalcaemia	Worsened my mechanical ventilation with
	hyperventilation, sevoflurane induced polyuria
Hypernatremia and associated skeletal muscle	Avoid high sodium intravenous fluid
weakness	

Table 7: The antihypertensive drugs used in pheochromocytoma with relative merits and uses.

Antihypertensives in pheochromocytoma						
Drug name	Drug class	Merits/demerits				
Phenoxybenzamine	$\alpha_1 + \alpha_2$ blocker	Preoperative therapy, long acting drug, can produce postural hypotension, tachycardia				
Phentolamine	$\alpha_1 + \alpha_2$ blocker	Very short acting drug, intravenous use in				

		hypertensive crisis		
prazosin	Selective(alpha) α	Preoperative therapy, short acting drug, does not		
terazosin	blocker	produce tachycardia, can produce postural		
doxazosin		hypotension		
Metoprolol	Selective(beta) β_1	Started after α blockers to control blood pressure,		
Atenolol	blocker	tachycardia. Metoprolol can be used intraoperative for tachycardia control		
Propranolol	$\beta_1+\beta_2$ blocker	Started after α blockers to control blood pressure, tachycardia. Not for intraoperative use		
Esmolol	β_1 blocker	Ultra-short acting drug, for intraoperative use		
Labetalol, carvedilol	α+β blocker	Second choice drug to α blockers for preoperative use, more β than α blockade (1:7), useful in intraoperative hypertension		
Amlodipine, nifedipine,	Calcium channel	Add on to adrenoceptor blockers to reduce their		
nicardipine, verapamil	blocker	dose and side effects, while achieving blood pressure control		
Metyrosine	Catecholamine	In metastatic tumours, inoperable patients, to		
	synthesis blocker	control blood pressure		
Nitroprusside, Nitro- glycerine	Vasodilators	For intravenous use in hypertensive crisis		

Table 8: List of drugs to be avoided and its rationale.

Drugs to be avoided		
Drug name	Class	Reason
Propranolol, atenolol, Metoprolol	β blocker	Not to be started before
		adequate α blockade, can
		cause severe hypertension
Glucagon, steroids, vasopressin,		Stimulate production of
histamine, angiotensin II		catecholamine.
Tyramine containing food- banana,		Cheese reaction-catecholamine
cheese, avocado, wine etc		release from storage vesicles
Phentermine, Methamphetamine,	Drugs for obesity	sympathomimetics
phenylethylamine		
Ephedrine, pseudoephedrine,	Nasal decongestant	sympathomimetic
phenylpropanolamine		
Amitriptyline, Nortriptyline, Duloxetine,	Tricyclic	Catecholamine reuptake
Venlafaxine	antidepressants	inhibitors
Cocaine		Catecholamine reuptake
		inhibitors
Selegiline, Linezolid	Monoamine oxidase	Inhibits metabolism of
	inhibitor effect	catecholamine
Metoclopramide, chlorpromazine,	Antiemetic,	Dopamine receptor
prochlorperazine	antipsychotic	antagonists, decrease
		dopaminergic inhibition on
		catecholamine synthesis
Succinylcholine, atracurium, rocuronium,	Neuromuscular	Ganglionic stimulator,
mivacurium	blockers	histamine release