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Abstract 

In this paper investigated properties of cross-diffusion systems of a biological population with double 

nonlinearity and convective transfer, simulated on computer processes of multicomponent cross-

diffusion systems of a biological population of convective transfer, obtained estimates for solving the 

Cauchy problem of multicomponent cross-diffusion systems of biological population of convective 

transport. 
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Introduction 

In 1937 Fisher proposed the equation [1; p. 355-360], 

      (*) 

as a deterministic version of the stochastic model of the propagation of a favorable gene in a diploid 

population, where the scalar function u(t,x) satisfies the given initial and boundary conditions, k and D - 

positive constants.  He examined the equation in detail and obtained a number of useful results.  Heuristic 

and genetically based derivation of the equation was also led by A.N. Kolmogorov, I.G. Petrovsky and N.S. 

Piskunov, whose classical work served as the basis for a more rigorous analytical approach to the Fisher 

equation.  Fisher's equation is one of the simplest nonlinear equations of reactions with diffusion, in which 

waves appear [1, p.20-30]. 

Equation (*) is the simplest differential model for the logistic model of population growth, which gives a 

solution like a kinematic wave [2; p.33-40, 40; p.30-35]. 

Consider a reaction-diffusion equation 

. 

At ,  the equation has the form 

. 

In [1;  pp. 469-507-136] the existence of global in time weak solutions of the reaction-cross-

diffusion systems for an arbitrary number of competing population species has been proved.  The equations 

derived from a lattice random walk model with shared transition rates.  In the case of linear transition rates, 

he expands the population model of two types: Shigezada, Kawasaki and Teramoto.  The equations 

(1 )t xxu ku u Du= − +

2

2
( )

u u u
D a f u

t x

  
= + +

  

,t t x at= = + a const=
2

2
( )

u u
D f u

t 

 
= +

 
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considered in a bounded domain with homogeneous Neumann boundary conditions.  The proof of existence 

based on a refined entropy method and a new approximation scheme.  Global existence follows a detailed 

balance or weak cross-diffusion condition. 

 

Shigesada and others [3;  pp. 469-507-136] proposed in their original work a diffuse Lotka-Volterra 

system for two competing species, which is able to describe the segregation of a population and show the 

formation of a pattern with increasing time.  Based on the lattice random walk model, this system was 

extended to an arbitrary number of species in [3;  pp. 469-507-136].  While the analysis of the existence of 

weak global solutions for the two-species model is well understood by now, there are only very few results 

for the n-species model under very restrictive conditions [3;  pp. 469-507-136] for the first time, a global 

analysis of the existence of an arbitrary number of population species using the entropy method is presented, 

and an amazing relationship is found between the monotonicity of entropy and the detailed state of balance 

of the associated Markov chain. 

At [4; pp.41-67] the system of Maxwell-Stefan equations is considered, which describes 

multicomponent diffusion flows in undiluted solutions or gas mixtures. 

 

Statement of the task 

Definition 1. Unlimited problem solution 

  (1) 

is called localized if for  exists , that  at

 [5; c.135-136].  

Definition 2. Function   is called the upper (lower) solution to the problem 

( ) ( )

( ) ( )

1 1

2 2

2
11

1 2 1 1 1 1 1

2
12

2 1 1 2 2 2 2

1 ,

1 ,

p
m k

p
m k

u
D u u u k u u

t

u
D u u u k u u

t





−
−

−
−


=   + − 


 =   + −

 

   

1 0 10( )tu u x= = , 2 0 20( )tu u x= = . 

if satisfies condition at the domain Q [5;  c.135-136] 

         ,  

и      . 

Definition 3. Solution   at every  is finite in x if satisfies condition [5;  p.135-

136] 

,    ,   and      at ,   . 

Note that below we will often use solution comparison theorems, which play an important role in 

the study of nonlinear problems.  Having found a particular solution of a self-similar or approximately self-

similar equation, then one can use it to compare solutions, which will make it possible, without knowing 

the solution to the problem, to obtain an estimate of the solutions through a known function, which is very 

important for the numerical solution of nonlinear problems.  Therefore, in nonlinear problems, when 

studying the properties of solutions, an important and sometimes decisive role-played by particular 

solutions. 

Therefore, we will often use, very important from the point of view of applications, the following 

comparison theorems for solutions [4, pp. 891-905]. 

(1 )t xxu ku u Du= − +

0 t T   + 0 L  + ( , ) 0u t x 

( , )x L +

( , )u t x+ ( )( , )u t x−

( )( ), 0L u t x+  ( )( )( ), 0L u t x− 

( )0 (0, )u x u x+ ( )( )0 (0, )u x u x−

( , )u t x ( )0,t +

( , ) 0u t x  ( )x l t ( , ) 0u t x  ( )x l t ( )0,t +
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Theorem 1. (Solution comparisons). Let   nonnegative generalized 

solutions of equation (1) in , satisfying the conditions [45; p.891-905] 

, 

 

   ( ). 

Then  в . 

Note that this theorem requires knowledge of the solutions to the problem, which is generally 

unknown.  In this formulation, the solution comparison theorem is not entirely useful from the point of 

view of practice.  We will also use the following comparison theorem for solutions [4;  pp. 135-136]. 

Theorem 2. Let  where function , in the 

domain  a non-negative generalized solution is defined  problem 

(1) and functions , where  continuous 

functions satisfying, respectively, the inequalities  ,     in   and 

,   . 

Then the solution to problem (1.1) satisfies the estimate  in . 

Function ,  are respectively called upper and lower solutions of problem (1). 

 

Properties of cross-diffusion systems of a biological population of convective transport 

In the domain Q {(t,x) :  0 t, x R}=    consider a cross-diffusion system of a biological 

population: 

( )

( )

1 1

2 2

2

11 1 1 1
1 2 1 1 2

2

12 2 2 2
2 1 2 2 1

( ) ( ) 1 ,

( ) ( ) 1 ,

p

m

p

m

u u u u
D u l t k t u u

t x x x x

u u u u
D u l t k t u u

t x x x x





−

−

−

−

      
= + + −         


     

= + + −        

                  (2) 

1 0 10( )tu u x= = ,  2 0 20( )tu u x= = . 

Here:  1

2

1 1
1 2

p

m u
D u

x

−

− 


, 2

2

1 2
2 1

p

m u
D u

x

−

− 


 - diffusion coefficients, ( )l t - convective transfer 

rate, 
1 2 1 2, , , ,m m p    - positive numeric parameters, 

1 1( , ) 0u u t x=  , 
2 2( , ) 0u u t x=   solutions 

of the cross-diffusion system of biological population. 

For a qualitative analysis of the system of equations for cross-diffusion of convective transport (2), 

a self-similar system of equations is constructed. 

For this, the method of reference equations and nonlinear splitting was used [1]. 

To construct systems of the self-similar equation in (4.11), we change the variables: 

1( , ) 0,u t x  2( , ) 0,u t x 

(0, ) NR+ 

2 1(0, ) (0, ),u x u x Nx R

2 1

2 1

( ,0) ( ,0),

( , ) ( , ),

u t u t

u t b u t b






(0, ),t T 0T 

2 1( , ) ( , )u t x u t x (0, ) NR+ 

 ( , ) :   ( ), 0 ,D x t x l t t=    l(t) 0, t 0 

( ) , : 0, NQ t x t x R=   ( , )u t x

( )( )  )( )1,2

,( , ) 0, 0,t xu t x C D C D      ( , ) 0u t x 

0Lu+  0Lu−  ( )0, D+ 

0(0, ) ( ) (0, )u x u x u x+ −  Nx R

( , ) ( , ) ( , )u t x u t x u t x+ −  Q

( , )u t x+ ( , )u t x−
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1

0

( )

1 1( , ) ( ( ), )

t

k d

u t x e v t
 

 
−

= ,   

0

( )

t

x l d  = −  , 

2

0

( )

2 2( , ) ( ( ), )

t

k d

u t x e v t
 

 
−

= ,  

0

( )

t

x l d  = −  , 

Change of variables will lead the solution of system (2) to the solution of the following system of 

equations:  

 

 

1 1 1 21 1

2 2 1 22 2

2

(2 ) ( 1)11 1 1
1 2 1 1 2

2

( 1) (2 )12 2 2
2 1 2 1 2

( ) ,

( ) ,

p

p k m k tm

p

m k p k tm

v v v
D v k t e v v

v v v
D v k t e v v

 

 

   

   

−

− + − +−

−

− + + −−

     
 = − 

      


    
= −        

        (3) 

1 0 10( )tv v = = ,  2 0 20( )tv v = = . 

In this case, a generalized solution to the problem from the class 1

2

1 1
2 ( ),

p

m u
u C Q

x

−

− 



 

2

2

1 2
1 ( )

p

m u
u C Q

x

−

− 



    and a satisfying system in a generalized sense.  System (2) is degenerate in the 

region where  

1 2
1 20, 0, 0, 0.

u u
u u

x x

 
= = = =

 
 

The system may not have a classic solution.  Therefore, when the equality 

1 2 1 2 1 2( 1) ( 2) ( 1) ( 2)m k p k m k p k− + − = − + − , select the parameter as follows: 

1 2 1 2 1 2[( 1) ( 2) ] [( 1) ( 2) ]

1 2 1 2 1 2

( )
( 1) ( 2) ( 1) ( 2)

m k p k t m k p k te e
t

m k p k m k p k


− + − − + −

= =
− + − − + −

. 

This will lead to the solution of the system of equations: 

( )

1 1 1

2 2 2

2

11 1 1
1 2 1 1 2

2

12 2 2
2 1 2 1 2

( ) ,

.

p

m b

p

m b

v v v
D v a t v v

v v v
D v a t v v






   


   

−

−

−

−

     
 = − 

      


    
= −        

                    (4) 

Here: 

( ) 1

1 1 1 1 2( 2) ( 1)
b

a k p k m k= − + − , 
1 1 1 2

1

1 1 2

(2 ) ( 1)
,

( 2) ( 1)

p k m k
b

p k m k

− + − +
=

− + −
 

( ) 2

2 2 2 1 2( 1) ( 2)
b

a k m k p k= − + − ,       
2 2 1 2

2

2 1 2

( 1) (2 )
.

( 1) ( 2)

m k p k
b

m k p k

 − + + −
=

− + −
 

After conditions are met: 0ib = , and ( )ia t const= , 1,2i = , we come to the solution of a 
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system of equations of the following form: 

 

1 1

2 2

2

11 1 1
1 2 1 1 2

2

12 2 2
2 1 2 1 2

,

.

p

m

p

m

v v v
D v a v v

v v v
D v a v v





   

   

−

−

−

−

     
 = − 

      


    
= −        

 

In order to construct a self-similar system for the cross-diffusion system (4), we initially solve the 

following system and find its solutions:   

1

2

1
1 1 2

2
2 1 2

,

.

d
a

d

d
a

d






 




 




= −


 = −


 

We are looking for a solution in the form: 

1

1 1 0( ) ( )c T    −= + ,  2

2 2 0( ) ( )c T    −= + , 
0 0T  . 

 Here  

1 1с = ,   1

2

1



= , 

2 1с = ,   2

1

1



= . 

To find system (4.1), we used the nonlinear splitting method: 

11 1

22 2

( , ) ( ) ( , ),

( , ) ( ) ( , ) ,

v t v t w

v t v t w

  

  

=

=
                                 (5) 

When the equality 
1 2 1 2 1 2( 2) ( 1) ( 2) ( 1)p m p m   − + − = − + − satisfied, parameter 

( )t =  choose as follows: 

1 2 1

1

1 [ ( 2) ( 1)]

1 2 1

( 1)( 2)
1 2 11 1 2

0
1 2 1

1

1
( ) ,

1 [ ( 2) ( 1)]

1 [ ( 2) ( 1)] 0,( ) ( ) ( )

ln( ), 1 [ ( 2) ( 1)] 0,

( ), 2 1.

p m

mp

T
p m

if p mv t v t dt

T if p m

T if p и m

 




 

  

  



− − + −

−−


+ − − + −


− − + − = = 

 + − − + − =


+ = =

  

After fulfilling the above conditions regarding the variable ( , ), 1,2iw x i =  we obtain a system 

of quasilinear equations [5]: 

1 1

2 2

2

11 1 1
1 2 1 1 2 1

2

12 2 2
2 1 2 2 1 2

( ),

( ).

p

m

p

m

w w w
D w w w w

w w w
D w w w w






   


   

−

−

−

−

     
 = + − 

      


    
= + −        

             (6) 

 Here 
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1 [ ( 2) ( 1)]1 2 1

1 2 1

1 2 11

( )

1 1 1 2 1

1
, 1 [ ( 2) ( 1) 0,

(1 [ ( 2) ( 1)])

, 1 [ ( 2) ( 1) 0,
p m

if p m
p m

с if p m
 

 
  

  
− − + −−


− − + −  − − + −= 


− − + − =

 

 (7) 

2 1 2

2 1 2

2 1 22

(1 [ ( 2) ( 1)])

2 1 2 1 2

1
, 1 [ ( 2) ( 1)] 0,

(1 [ ( 2) ( 1)])

, 1 [ ( 2) ( 1)] 0.p m

if p m
p m

с if p m 

 
  

  − − − + −


− − + − 

− − + −= 
 − − + − =

 

       We came from solving system (3) to solving system (7).  →  and 0i →  are solutions of 

the system of equations asymptotically tends to the solution of the following system of equations [5]: 

1

2

2

11 1 1
1 2

2

12 2 2
2 1

,

.

p

m

p

m

w w w
D w

w w w
D w

   

   

−

−

−

−

     
 =  

      


    
=         

                                 (8) 

When building an iterative process  choosing initial approximations used this feature.  If the following 

condition is true 
1 2 11 [ ( 2) ( 1) 0p m − − + −  , then the wave solution of system (7) has the 

following form: 

( ( ), ) ( )i iw t f  = , c  =  ,  1,2i = . 

Here c is the wave velocity, and the solutions of the system ( ( ), ) ( )i iw t f  =  are found from 

the following self-similar systems of equations [5]: 

1 1

2 2

2

1 1 1 1
2 1 1 1 2

2

1 2 2 2
1 2 2 2 1

( ) ( ) 0,

( ) ( ) 0.

p

m

p

m

d df df df
f c f f f

d d d d

d df df df
f c f f f

d d d d






   


   

−

−

−

−


+ + − =





+ + − =


                          (9) 

Here: 

3

1
, 1,2

(1 [ ( 2) ( 1)])
i

i i i

i
p m


  −

= =
− − + −

. 

Self-similar system of equations has the following localized solution: 1

1 ( ) nf A a  += − , 

2

2 ( ) nf B a  += − , 

( )( ) ( )( )

( ) ( )( )

1 2

1 2

2

1 2

1 ( 1) 1 ( 1)
, ,

2 1 1 ,

p p m p p m
n n

n n

n p m m

− − + − − +
= =

= − − − −
 

when the condition is met: 
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( )( ) 1/2

1 2

1 1 2 1

2 [ 1 1 ] , ( 1) 0, 1,2,

1 / , 1 / .

ip m m p m i

n n 

 + − − − +  =

= =

 

Coefficients A and B are the solution to systems of algebraic equations of the following form: 

1 11 1

1( ) mp pn A B c−− − = , 

2 11 1

2( ) mp pn A B c−− − = . 

As: 

1

0

( )

1 1( , ) ( ( ), )

t

k d

u t x e v t
 

 
−

= ,    

2

0

( )

2 2( , ) ( ( ), )

t

k d

u t x e v t
 

 
−

= , 

we get: 

1

0 1

( )

1( , ) ( ( ) )

t

k d
nu t x Ae c t

 

 
−

+


= − , 

2

0 2

( )

2( , ) ( ( ) )

t

k d
nu t x Be c t

 

 
−

+


= − , 0c  . 

        Considering: 

0

[ ( ) ( ) ] 0

t

b t l d x  − − = , 

when conditions are met 

0

[ ( ) ( ) ]

t

x b t l d x   − − , 0t  , 

get 

1( , ) 0u t x  , 
2( , ) 0u t x  ,

0

[ ( ) ( ) ]

t

x b t l d x   − − , 0t  . 

This shows that the localization condition for solving the system of cross-diffusion equations (9) 

is: 

0

( ) 0

е

l y dy  ,     ( )t   for 0t  .                           (10) 

When condition (10) is satisfied, we get a new effect - localization of wave solutions (4.19).  If 

condition (10) is not fulfilled, we obtain a phenomenon called the finite velocity of propagation of the 

disturbance [5].  

 In this case ( , ) 0iu t x   at ( )x b t , 

1 1

0

( 3) ( )

0

( )
t m p k y dy

t e d



 
− + − 

=  , ( )t →  at t →

. 

     If the conditions are met 
1 20, 0, 0n n n     there is a slow diffusion process.  Using the 

method of nonlinear splitting [1] when finding a solution to equation (4.19), functions of the following form 

were obtained: 

1 2

1 2( ) ( ) , ( ) ( ) ,n na a     + += − = −  

Here: 0a  , ( )( ) max , 0y y+ = ,  a  .  

It is known [1, 2] that for global solutions of the cross-diffusion system (6) to exist, the following 
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inequalities with respect to the function ( )f  : 

1 1

2 2

2

1 1 1 1
2 1 1 1 2

2

1 2 2 2
1 2 2 2 1

( ) ( ) 0,

( ) ( ) 0,

p

m

p

m

d df df df
f c f f f

d d d d

d df df df
f c f f f

d d d d






   


   

−

−

−

−


+ + − 





+ + − 


 

at                                    

1 2 2 11/ , 1/n n = = . 

Consider the functions 1 2( ), ( )    , and prove that these functions are the asymptotics of the 

solutions of system (7) and these solutions are finite [5]. 

 Theorem 3. At  
1 20, 0, 0n n n     1 2

1 2( ) ( ) , ( ) ( ) ,n na a     + += − = −  

( )( )1

1

1 ( 1)
,

p p m
n

n

− − +
=

( )( )2

2

1 ( 1)
,

p p m
n

n

− − +
=  

( ) ( )( )
2

1 22 1 1 ,n p m m= − − − −  then at a −→  a finite solution of system (7) has the asymptotics 

( )( )~
i i

f    . 

Proof.  The solution to equation (7) is sought in the following form ( ) ( ), i 1,2
i i i

f y  = = .                                   

(11) 

Here: ( )ln a = − − . At a −→  occurs  →+ . This allows us to investigate solutions to problem 

(11) for asymptotic stability at  →+ . 

 Substituting (7) into (9) with respect to the variables ( )iy   we obtain an equation of the following 

form 

2 2

1 1

3 3( ) ( )i i

p p

m mi i i i
i i i i i i i i i i i

d

d

dy dy e dy dy
y n y n y n y n y n y

d d a e d d




    

− −−
− −

− −−
+ +

    
− − − − −       −   

 

                                           (12) 

3

3 0.( )(1 )i i ini
i i i i i

dy e
c n y y e y

d a e


 


 


−

−
−

−−
+ − =
 

− + 
− 

 

Here the kind of function    defined above. 

         Solutions of systems of equations (7) and (12) in the interval  )0 , +   satisfy the inequalities: 

( ) 0iy   , 0i
i i

dy
n y

d
− . 

First, we show that the solutions ( )iy   systems, equations (12) have for  →+  final limit 
0iy

. For this, we introduce the following notation 

( )
2

1

3
i

p

m i i
i i i i i i

dy dy
y n y n y

d d
 

 

−

−

−=
 

− − 
 
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3( )(1 )i i ini
i i i i i i ii

e dy e
n c n y y e y

a e d a e

 
 

 
   



− −
−

−− −
 = − −

   
− − − +   

− −  
. 

For further research, we introduce the following auxiliary new function:

3( , ) ( )(1 )i i ini
i i i i i i

e dy e
n c n y y e y

a e d a e

 
 

 
     



− −
−

−− −
= − −

   
− − − +   

− −  
. 

Here   - real numeric parameter.  Function ( ),    does not change sign at some interval 

 )  )1 0, , +   +  .  For anyone  )1,  +   the following inequalities hold 

( ) 0i   , ( ) 0i   . 

So the function ( )i   has at  )1,  +   final limit. Given the expression for ( )i   we have: 

( ) 3

3lim lim 0.( )(1 )i i ini
i i i i i i i i

e dy e
n c n y y e y

a e d a e

 
 

  
    


−

− −
−

−− −→+ →+
 = − − =

    
− − − +    

− −   

 With considering 

a → ,
 

lim 0e 



−

→+
→ , lim ,a e a



−

→+
→− 0,i =  

we obtain the system of algebraic equations 

1, 1,2 :i i  =   

( )

( )

1

2

1 1 1

1 2 1

1 1 1

2 1 2

,

.

p m p

p m p

n y y c

n y y c

− − −

− − −

=

=

 Solving the system of algebraic equations, we obtain 1
i

y = .  Given [5]  

(4.21) ( ) ( )~
i i

f    .  

2) 1/ , 1,2.i in i = =  
i

y  should be a solution of the system [5] 

( )

( )

1 1 1 1

2 2 2 2

1 1 n ( 1)2

1 2 1 1 2

1 1 n ( 1)2

2 1 2 1 2

,

.

p m np

p m np

n y y y y c

n y y y y c





− − −−

− − −−

+ =

+ =

 Solution to the system of algebraic equations is  1
i

y = .  Considering (4),  we get ( ) ( )~
i i

f    .  

Theorem 3 is proved. 

Table 1 

Computational Experiment Results.  Fast diffusion 

Parameter values 

1 1x = ; 2 1x = ; 

2x =  

1 2x = ; 2 2x =
; 

2 2x =  

1 3x = ; 2 3x = ; 

3 2x =  

1 20.8, 0.7, 2.1m m p= = =  

310eps −=  

1 22 5 = =  

3 0im p+ −   
   

time1 FRAME 1+( ) time2 FRAME 1+( ) time1 FRAME 1+( ) time2 FRAME 1+( )

time1 FRAME 1+( ) time2 FRAME 1+( )
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3n =  

1 20.4, 0.5, 2.2m m p= = =  

310eps −=  

1 22 2 = =  

3 0im p+ −   

5n =     

 

The results of the computational experiment with slow diffusion are shown in Table 1.  As an 

initial approximation, we took 0u , 0v  function 1 1

0( , ) ( ) ( ) qu x t T t a −

+= + − , 

2 2

0( , ) ( ) ( ) qv x t T t a −

+= + − , 

1

0

( ( ) ) /

t

pc y dy x = − ;  

1

( ) 1 / ( ) , 1, 1, ( ) ( ) / (1 )

n

nc t T t n n c y dy T t n

−

= +   = + −  ;
  1

1

1

1



=

−
,   

2

2

1

1



=

−

, 
( 1)

, 3 0, 1,2,
3

i i

i

p
q p m i

p m

−
= + −  =

+ −
( , ) ( , ) 0u x t v x t= 

 

when
 

1

1 ( 3)( 1)/

1 2

1 20

1
( ) , ( ) ( ) / [1 ( 3)], , 1,2, 1

1
i i

t

m pp p p i
i i ix c y dy a t T t m p i

 
     

 

− + −− +
 − = + − + − = = 

−

Table 2 

Computational Results for Slow Diffusion 

Parameter values 

1 1x = ; 2 1x = ; 

2x =  

1 2x = ; 2 2x = ; 

2 2x =  

1 3x = ; 2 3x = ; 

3 2x =  

1 21.9, 5, 2.5m m p= = =   

310eps −=  

1 21.5 2 = =  

3 0im p+ −   

3n =     

1 21.5, 2, 2.5m m p= = =   

310eps −=  

1 21.5 2 = =  

3 0im p+ −   

5n =     

 

 

 

time1 FRAME 1+( ) time2 FRAME 1+( ) time1 FRAME 1+( ) time2 FRAME 1+( )

time1 FRAME 1+( ) time2 FRAME 1+( )

time1 FRAME 3+( ) time2 FRAME 3+( )
time1 FRAME 3+( ) time2 FRAME 3+( ) time1 FRAME 3+( ) time2 FRAME 3+( )

time1 FRAME 3+( ) time2 FRAME 3+( ) time1 FRAME 3+( ) time2 FRAME 3+( )

time1 FRAME 3+( ) time2 FRAME 3+( )
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Conclusion 

In this paper obtained estimates for solving the Cauchy problem for multicomponent cross-

diffusion systems of a biological population with double nonlinearity depending on the values of the 

parameters of the environment and the dimension of space and initial data. 

Lower and upper bounds are obtained for the solution of the Cauchy problem by the nonlinear 

splitting algorithm for the equation of multicomponent cross-diffusion systems of a biological population, 

which makes it possible to construct the asymptotics of generalized solutions with a compact support and 

solutions of systems of self-similar equations vanishing at infinity, allowing the problem to be solved 

numerically. 

The problems of choosing initial approximations depending on the values of numerical parameters 

and data solved, which made it possible to trace the evolution of the reaction-diffusion process. 
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