ISSN 2515-8260

Volume 08, Issue 02, 2021

# Clinical and Laboratory Evaluation of Faltering Growth in Infants with Cow's Milk Protein Allergy

Naglaa Ahmed El-Adawy<sup>1</sup>, HebaGamal Anany<sup>2</sup>, Nahed Mahmoud Helmy Khater<sup>3</sup>, DoaaAlhussein Mostafa<sup>4</sup>

<sup>1,2,3</sup>Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt. <sup>4</sup>Department of Microbilogy and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.

Corresponding Author: Naglaa Ahmed El-Adawy. Email: <u>naglaaeladawy36@gmail.com</u> Declaration of interest

The authors report no conflicts of interest. The authors along are responsible for the content and writing of the paper.

Funding information

None declared

## Abstract

Background: Cow's Milk protein Allergy (CMA) is a serious and potentially lifethreatening problem for an estimated

2.5 % of children. Infants with CMA are at risk of growth faltering, however, data are still limited. .

Objectives: The aim of the study was to assess growth and nutritional status in infants with CMA and to evaluate the implications of CMA in infants with flatteringgrowth.

Methods: This cross sectional study was performed in the period from April 2019 to September 2019 in Pediatrics Department of Zagazig University Hospitals. The study included 72 patients with CMA diagnosed by oral challenge test after elimination diet. Allergy work up included skin prick test and measuring specific (Immunoglobulin E) IgEforCow'sMilkprotein(CMP)forallpatients.Thegrowthandnutritionalstatusofthepatients

wasassessedbasedon World Health Organization (WHO) growth charts and growth zscores for weight-for-age, weight-for-height and height-for-age, in addition to laboratoryinvestigations.

Results: Data from 72 infants (43 male and 29 female) with age of 9.92 ± 5.853 monthsindicatedthat9outof72

infants(12.5%)werediagnosedasImmediateIgEmediatedCMAwhiletheother63infants(87.5%)wereconsidered delayed non-IgE mediated CMA. Twenty-five infant out of 72 (34.7%) suffered from faltering of growth. We found that 20.8% of infants had z score < -2SD as regard weight for age while (9.7%) and (4.3%) had z score < -2 SD as regard height for age and weight for height respectively. We also, found that 36.1% of infants suffered from iron deficiency anaemia with haemoglobin (11.16  $\pm$  1.53) g/dl, while 29.2% of infants showed hypoalbuminemia with serum albumin level (2.9  $\pm$ 0.177)g/dl.

ISSN 2515-8260 Volume 08, Issue 02, 2021 Conclusion:GrowthfalteringandnutritionalproblemsaremajorconcernsininfantswithCMA. Propermanagement of infants with CMA, including specialist dietetic advice and regular growth monitoring, is mandatory to avoid these concerns. When evaluating an infant with flattering growth, iron deficiency anaemia and/ or hypoalbuminemia physicians should include in their evaluation extensive search forCMA.

## 1. INTRODUCTION

Cow's milk is one of the most common and often the first food introduced into the infant diet, even during breastfeeding. Cow milk protein allergy (CMA) affects  $\sim 2.5\%$  of children and may occur early in life, even during the neonatal period (1). The immunological mechanisms that lead to the development of CMA have not been clarified, yet. There are two main described mechanisms contributing to the pathogenesis of this disease referred to as immediate Immunoglobulin E (IgE) mediated and delayed non- IgE mediated mechanisms(2). There is no one symptom pathognomonic of CMA; it can present with an array of symptoms affecting different organ systems typically the skin, respiratory and gastrointestinal tracts with many infants developing symptoms in more than one organ system(3).

 $\label{eq:constraint} For clinical practice, diagnosis of CMA is a challenging process that requires integration of medical history$ 

and food challenge procedure, in addition to laboratory tests. Positives kinprick test and/or elevated specific

IgEtoCow'sMilkProtein(CMP)areusefuldiagnostictestsindicatingsensitizationtoCMPandanon going IgE-mediated immunological process; however, their results must be interpreted in the context of medical history and food challenge procedure(**4**).

Infants with CMA are at risk of growth faltering due to increased energy requirements from inflammation (skin/gut), disrupted sleep, reduced nutrient absorption, vomiting, diarrhea, and reduced intake while on elimination diets(**5**).

The aim of this study is to assess the nutritional status of infants with CMA and evaluate the implications of CMA in infants with flattering growth.

#### 2. PATIENT AND METHODS

This cross sectional study was performed in the period from April 2019 to September 2019 in Pediatrics Department of Zagazig University Hospitals. This study included 72 patients with CMA. Inclusion criteria were male and female infants with any manifestations suggesting allergy including eczema, bronchial asthma and / or chronic diarrhea. Diagnosis was established in accordance to patients' history and positive food challenge test. Infants with known cause of flattering growth were excluded.

Written informed consent was taken from the patients' guardians to participate in the study. Approval for performing the study was obtained from Pediatrics and Medial Microbiology and Immunology Departments, Zagazig University Hospitals after taking Institutional Review Board (IRB) approval. The study was performed in accordance with the Declaration of Helniski.

All patients were subjected to detailed history taking include age, sex, history of any

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260Volume 08, Issue 02, 2021diseases and presence of allergic manifestations with the introduction of cow's milk. Fullgeneral examination was performed including measurement of the body weight and length toassessgrowthretardation.Laboratoryinvestigationsperformed includedCompleteBloodPicture(CBC)withdifferentiationWBCs,totalproteins and albumin levels, stool analysis and occult blood in stool.

Special investigations to assess sensitization to CMP were performed. SPT was performed for all patients

usingcow'smilkallergenextract.Histaminedihydrochlorideandsalinesolutionswereusedaspositi veand

negativecontrols, respectively. The diameters of the wheal reactions were determined after 15 minute s. All tests with a wheal diameter of > 3 mm elicited by the extract and valid controls were considered positive tests for sensitisation to CMP. Specific IgE for CMP was measured by Immune blot assay (AllergyScreen test, UK) Allergy Screen Panel 1 (MEDIWISS Analytic GmbH, Hanover, Germany) according to the manufacturer's instructions. The result was stated in iU/ml (range 0.35 - 100iU/ml)

# Statistical analysis

Data we retested for normal distribution using the shapirowalk test. Qualitative data we rerepresented

asfrequencies and relative percentages. Chisquaretest( $\chi 2$ ) and fisher exact was used to calculate difference between qualitative variables as indicated. Quantitative data were expressed as mean  $\pm$  sd (standard deviation) for parametric and median and range for non-parametric data. Independent t test and mannwhitney test were used to calculate difference between quantitative variables in two groups for parametric and non-parametric variables respectively. All statistical comparisons were two tailed with significance levelofp-value  $\leq 0.05$  indicates significant, p< 0.001 indicates highly significant difference while, p> 0.05 indicates non-significant difference.

# 3. RESULTS

In our study, we examined 72 infants (43 male and 29 female) with cow's milk protein allergy confirmed with oral challenge test with mean age 9.92 month. We found that 72.2 % of them had positive familyhistoryoffoodallergy.Wealsofoundthat58.3%ofthemwerefromurbanareaswhile41.7%w ere from rural areas. (Table1)

Only nine case out of 72 (12.5%) had positive skin prick test to CMP and/ or elevated levels of specific IgE to CMP. (Table 2)

The study shows great variability in symptoms of cow's milk allergy where all infants (100%) had gastrointestinal manifestations, in the form of diarrhea, constipation, emesis, abdominal bloating and/or reflux,while76.4%hadCutaneoussymptoms(Itching,flushingskinrashand/orswellingofthelips,f ace),

47.2~% of infants had respiratory symptoms (Cough and/or wheezing) and 1.4~% had anaphylaxis. (Table 3)

In our study, 34.7% of infants suffer from faltering of growth in which 20.8% of infants had z score

<-2SDasregardweightforage,(9.7%)and(4.3%)hadzscore<-

2SDasregardheightforageandweight for height respectively. (Table4)

Regarding laboratory investigations, we found slight elevation in total leucocytic count with mean

 $9.57 \pm 1.69 \times 10^3/\mu$ L and 30.5% on infants had eosinophilia. 37.5% of patients were positive for occult

bloodinstooland36.2% suffered from iron deficiency anemia (IDA) with haemoglobin 11.16 $\pm$ 1.53g /dL, while 29.2% of infants showed hypoalbuminemia with serum albumin level (2.9  $\pm$ 0.177) g/dl. (Table 5)

|                                          |        | All patients (n=72) |
|------------------------------------------|--------|---------------------|
| Age (months)<br>Mean ± SD Rai            | nge    | $9.92 \pm 5.853$    |
|                                          |        | 2 - 24              |
| Sex                                      | Male   | 43 (59.7%)          |
|                                          | Female | 29 (40.3%)          |
| Positive family history for food allergy |        | 52 (72.2%)          |
| Residence                                | Rural  | 30 (41.7%)          |
|                                          | Urban  | 42 (58.3%)          |

Table 1. Demographic distribution of the studied patients (n=72)

Table 2. Classification of patients into immediate IgE mediated CMA and delayed non- IgE mediated CMA

| All patients = 72            | N (%)      |
|------------------------------|------------|
| Immediate IgE mediated CMA   | 9 (12.5%)  |
| Delayed non-IgE mediated CMA | 63 (87.5%) |

| Symptoms                                                     | All patients (n=72) |  |
|--------------------------------------------------------------|---------------------|--|
| Cutaneous symptoms                                           | 55 (76.4%)          |  |
| (ltching, flushing skin rash and swelling of the lips, face) |                     |  |
| Respiratory symptoms                                         | 34 (47.2%)          |  |
| (Cough and wheezing)                                         |                     |  |
| Gastrointestinal symptoms                                    | 72 (100%)           |  |
| (Diarrhea, constipation, emesis, abdominal                   |                     |  |
| bloating,reflux)                                             |                     |  |
| Anaphylaxis                                                  | 1 (1.4%)            |  |

## Table 3. Distribution of symptoms among CMA patients.

Table (4): Anthropometrics of CMA patients

| All patients (n=72)   | Z score (Mean ± SD) | Deficit<br>Z score< -2 SD |
|-----------------------|---------------------|---------------------------|
| Weight -for-age (kg)  | -0.7 ± 1.33         | 15<br>20.8%               |
| Height-for-age(cm)    | -0.9 ± 1.82         | 7<br>9.7%                 |
| Weight-for-height(kg) | $-0.4 \pm 1.72$     | 3<br>4.2%                 |

## Table 5. Laboratory parameters of CMA patients

| Laboratory parameters       | All patients (n=72) |
|-----------------------------|---------------------|
| Haemoglobin(g/dl) Mean ± SD |                     |
| Range                       | $11.16 \pm 1.53$    |
|                             | 8 - 14              |
|                             |                     |
|                             |                     |

ISSN 2515-8260

Volume 08, Issue 02, 2021

| <b>TLC</b> $(10^{3} / \mu L)$          |                   |
|----------------------------------------|-------------------|
| Mean ± SD Range                        | $9.57 \pm 1.69$   |
|                                        | 7 – 11.3          |
|                                        |                   |
| Eosinophil count(cells/ul)             |                   |
| Mean ± SD Range                        |                   |
|                                        |                   |
|                                        | 160-780           |
| Eosinophilia                           | 22 (30.5%)        |
| Neutrophil (%)                         |                   |
| Mean ± SD                              | $50.06 \pm 17.48$ |
| <b>PLT</b> (10 <sup>3</sup> / $\mu$ L) |                   |
| Mean ± SD Range                        | 227.3 ± 59.59     |
|                                        | 145 - 350         |
| Serum albumin (g/dl) Mean + SD         |                   |
| Range                                  | $2.96 \pm 0.177$  |
|                                        | 2.5 - 3.2         |
| Total protain (g/dl) Mean + SD         |                   |
| Range                                  | $7.24 \pm 0.773$  |
|                                        | 6-8.5             |
|                                        |                   |
| Positive occult blood in stool         | 27 (37.5%)        |
| Iron deficiency anaemia                | 26 (36.2%)        |
|                                        |                   |

4. **DISCUSSION** 

CMA is the most common food allergy found in children under 3 years of age. It is defined as a reproducibleadversereactiontooneormoremilkproteinsmediatedbyoneormoreimmunemechani sms. (6)

Inthepresentstudy, we included 72 infants with CMA confirmed by or alchallenge procedure, which is the gold standard for diagnosis of food allergies. The age of patients ranged from 2 to 24 months, with a mean  $\pm$ SD of 9.92  $\pm$  5.853 months which represented the common age of CMPA.

Among the 72 infant with CMA there were 43 males (59.7%) and 29 females (40.3%) with male dominance at a ratio of 1.4:1.In accordance with our study,**Teymourpour et al.** 

(7) found that of 49 patients, male to female ratio was 59.2/40.8%, respectively. Also, **Vandenplas** et al. (8) reported the dominationofmalegenderthan femaleby56/44% among CMPA children. This common finding together with the male predominance of food allergies in general at young age could be explained by X-linked recessive traits associated with allergic disease that would be un-masked in males(9).

We noted that in our study, about 58% of the patients were urban. Similarly, Schoemaker et al. (6) documentedthatmostoftheirpatientswereurban.Thiscouldbeexplainedbyadecreaseinbreastfeedi ng and an increased feeding with cow's milk-based formulas in urbanareas.

In addition, we found that 72% of the patients had positive family history for food allergy. **Hossny et al. (10)** found that 100% of the patients with positive family history for food allergy. This goes with the genetic predisposition for allergy (i.e., atopy) which is known to increase susceptibility to CMA.

Cow's milk allergy is classified according to the underlying immune mechanism, timing of presentationintoimmediateIgEmediatedallergyanddelayednon-IgEmediatedallergy(2).Weperformed SPT using CMP allergen extract and measured specific IgE to CMP by immunoblot assay and the results were interpreted in accordance to patients' history and rapid development of symptoms within minutes up to2hourafteroralchallengetestand9patientsoutof72(12.5%)wereconsideredtohaveimmediateIg E mediatedCMA.

Regarding the clinical presentation of our cases, we found that 76.4% of the patients had cutaneous symptoms, while gastrointestinal symptoms were found in 100% of the patients and respiratory symptoms were found in 47.2% of the patients, and only one patient had anaphylaxis. The marked variability in the clinical presentations and the lack of definitive laboratory biomarkers for CMA, specially delayed no n-IgE allergy makes the diagnosis a great challenge.(11)

Cow's milk is a major provider of macro- and micronutrients in childhood. In addition, it forms part of a more varied diet where other foods also contribute essential nutrients, in later childhood (12). We hypothesizedthatCMAcanleadtogrowthflatteringornutritionalproblemsandtriedtotestthishypot hesis by clinical and laboratorymeasures.

In our study, 34.7% of case had flattering growth. Faltering growth (previously known as failure to thrive[FTT])isconsideredwhenthereisadropinweightof>1SDinweight-for-ageorweight-for-hei ght

growthcurveinthepast3monthsinachild<1yearofage,orthedownwardcrossingof2centilesifcentil e charts used (13). We noted in our study among 72 infants, 15 (20.8%) infants had weight/age z score < - 2SD, 7(9.7%) and 3(4.2%) infants had height/age and weight/height z score < -2SDrespectively.

The concern about growth in CMA was raised more than 20 years ago in a study by Isolauri et al 1998 (14) where the mean SD for height-for-age and weight-for-height was significantly lower in cow's milkallergicinfantscomparedtohealthycontrols.Subsequently,severalotherstudieshavebeenpub lished to report similar findings. For example, Flammarion et al (15) (10) documented that among 96 infants with food allergy, (9.3%) had Wt/Age z score<- 2SD, (7.2%) had height/age score <-2SD and (5.3 %)of infantshadWt/Htzscore<-Z 2SD.Thisstudyshowspredominanceinweight-for-agedeficitasinourstudy.

However, **Meyer et al (16)** studied 97 infants with food allergy most commonly to CM and found that (11.1%), (8.5%) and (3.7%) of infants had Ht/Age, Wt/Age and Wt/Htz score< -2 SD respectively.

Weight usually declines from the baseline percentile before length does when Flattering growth is duetonutritionalinsufficiency.WhilelineargrowthdeclinesisrelatedtotheeffectofCMPonInsulin-like growth factor 1 and insulin(17).

Inourstudy, the laboratory finding of studied groups how low level of haemoglobin with mean (11.16  $\pm$  1.53) g/dl and 36.1% of infants suffer from iron deficiency anaemia. This may be explained by occult

bloodlossinstoolwhichwasdetectedin37%ofourcasesduetoinflammationofthegastrointestinaltr act. In addition, anemia could be attributed to inhibition of non-heme iron absorption by calcium and casein in cow's milk (18).

There is also decrease in serum albumin level with mean (2.9+-0.177)g/dl. Hypo albumenia may be due to mucosal inflammation and protein losing enteropathies(**19**).

We also found slight elevation in total leucocytic count with mean (15.34  $\pm$  7.22) 10<sup>3</sup> /µL. eosinophilia in 30.5% which can be attributed to the allergic inflammatory reaction (20)

In consistency with our study, **Yang et al.** (16) studied 12 infants with milk protein induced enterocolitis and found that they all had hypoalbuminemia with mean serum albumin  $(2.13 \pm 3.5)$  g/dl. Most of them had elevated leucocytic count ( $\geq 12.5 \times 10^3 / \mu L$ ). They also reported 33.3% of infants with iron deficiency anaemia. Similar to our finding, Lai and Yang (21) found that 57% of the patients had occult blood in stool and 29% with eosinophilia. In addition, Concha and Cabalin

(22) reported84%ofinfantswithoccultbloodinstool.However,LozinskyandMorais(23) documented 43.8% of infants with esinophilia.

CMPA is a major health problem that affect the growth and nutritional status of infants. Definitive diagnosis of CMA is challenging. Therefore, growth flattering, iron deficiency anemia and hypoalbumineamia may represent red flags for a paediatrician to investigate the possibility of CMP as a cause.

## 5. CONCLUSION

Growth faltering and nutritional problems are major concerns in infants with CMA. Proper management of infants with CMA, including specialist dietetic advice and regular growth monitoring, is mandatory to avoid these concerns. When evaluating an infant with flatteringgrowth, iron deficiency anaemia and/ or hypoalbuminemia physicians should include in their evaluation extensive search forCMA.

## REFERENCES

- [1] **Castroa AP, Pastorinoa AC, Gushkena AKF, Kokronb CM, Filhoa UD**, Jacoba CMA. Establishing a cut-off for the serum levels of specific IgE to milk and its components for cow's milk allergy: results from a specific population. AllergolImmunopathol (Madr) 2015;43:67–72.
- [2] Giovanna, V., Carla, C., Alfina, C., Domenico, P., & Elena, L, Theimmunopathogenesis of cow's milk protein allergy (CMPA). Italian Journal of Pediatrics, 2012; 8(1),35.
- [3] Koletzko S, Niggemann B, Arató A, Dias JA, Heuschkel R, Husby S, Schäppi MG, Diagnostic approach and management of cow's-milk protein allergy in infants and children. J PediatrGastroenterolNutr, 2012;55:221–229.
- [4] **Boyce JA, Assa'ad A, Burks AW, Jones SM, Sampson HA, Wood RA, et al.** Guidelines for the diagnosis and management of food allergy in the United States: summary of the NIAID-sponsored expert panel report. J Am Diet Assoc, 2011;111:17.
- [5] Dupont, C., Chouraqui, J.-P., Linglart, A., Bocquet, A., Darmaun, D., Feillet, F.Briend,
  A, Nutritional management of cow's milk allergy in children: An update. Archives de Pédiatrie, 2018; 25(3), 236–243.
- [6] Schoemaker AA, Sprikkelman AB, Grimshaw KE, Roberts G, Grabenhenrich L, RosenfeldL,FiandorA.Incidenceandnaturalhistoryofchallenge-proven cow'smilkallergyinEuropeanchildren–EuroPrevallbirthcohort.Allergy 2015; 70(8):963– 972.
- [7] Teymourpour P, Pourpak Z, Fazlollahi MR, Barzegar S, Shokouhi R, Akramian R, Moin M. Cow's milk anaphylaxis in children first report of Iranian Food Allergy Registry. Iran J Allergy Asthma Immunol. 2012;11:29–36.
- [8] **Vandenplas Y, Abuabat A, Al-Hammadi S, et al.** Middle East Consensus Statement on the Prevention, Diagnosis, and Management of Cow's Milk ProteinAllergy [published correction appears in PediatrGastroenterolHepatolNutr. 2014 Sep;17(3):201.
- [9] Pensabene,L.,Salvatore,S.,D'Auria,E.,Parisi,F.,Concolino,D.,Borrelli,O.,Thapar, N., Staiano, A., Vandenplas, Y., & Saps, M. Cow's Milk Protein Allergy in Infancy: A Risk Factor for Functional Gastrointestinal Disorders in Children?. Nutrients.2018; 10(11), 1716.
- [10] Hossny E, Gad G, Shehab A, El-Haddad A. Peanut sensitization in a group of allergic Egyptian children. Allergy Asthma ClinImmunol. 2011;7:11–17.
- [11] Abdel Maksoud HM, Al Seheimya LAF, Hassan KAG, Salem MF, Elmahdy E. Frequencyofcowmilkproteinallergyinchildrenduringthefirst2 yearsof life in Damietta Governorate. Al-AzharAssiut Medical Journal 2019; 17:86–95.
- [12] Yanagida, N., Minoura, T., &Kitaoka, S. Does Terminating the Avoidance of Cow's

Milk Lead to Growth in Height? International Archives of Allergy and Immunology.2015; 168(1), 56–60.

- [13] **Olsen,E.M.,Skovgaard,A.M.,Weile,B.,Jorgensen,T,**Riskfactorsforfailuretothrive in infancy depend on the anthropometric definitions used: the Copenhagen County Child Cohort, Paediatric and Perinatal Epidemiology.2007; 21, 418–31.
- [14] Isolauri E, Sutas Y, Salo MK, Isosomppi R, Kaila M. Elimination diet in cow's milk allergy: risk for impaired growth in young children. J Pediatr. 1998; 132(6):1004-1009.
- [15] Flammarion, S., Santos, C., Guimber, D., Jouannic, L., Thumerelle, C., Gottrand, F.,
  & Deschildre, A. Dietandnutritional status of children with food allergies. Pediatric Allergy and Immunology. 2011; 22(2), 161–165.
- [16] MeyerR1,DeKokerC,DziubakR,VenterC,Dominguez-OrtegaG,CuttsR,Yerlett N, Skrapak AK, Fox AT, Shah N. Malnutrition in children with food allergies in the UK. Journal of Human Nutrition and Dietetics. 2014 Jun; 27(3):227-35.
- [17] Yang, M., Geng, L., Xu, Z., Chen, P., Friesen, C., Gong, S., & Li, D.-Y. Severe Food Protein-Induced Enterocolitis Syndrome to Cow's Milk in Infants. Nutrients.2015; 8(1),1.
- [18] **Ziegler EE**. Consumption of cow'smilk as a cause of iron deficiency in infants and toddlers. Nutr Rev 2011;69:S37e42.
- [19] Hwang JB, Lee SH, Kang YN, Kim SP, Suh SI, KamS. Indexes of suspicion oftypical cow's milk protein-induced enterocolitis. J Korean Med Sci.2007; 22(6):993–7.
- [20] Noh G, Jin H, Lee J, Noh J, Lee WM, Lee S. Eosinophilia as a predictor of foodallergy in atopic dermatitis. Allergy Asthma Proc. 2010 Mar-Apr;31(2):e18-24.
- [21] Lai FP and Yang YJ. The prevalence and characteristics of cow's milk protein allergy in infants and young children with iron deficiency anemia. PediatrNeonatol. 2018;59(1):48-52.
- [22] Concha, S., Cabalín, C., Iturriaga, C., Pérez-Mateluna, G., Gomez, C., Cifuentes, L. Borzutzky, A. Estudio de validezdiagnóstica de la prueba de hemorragiaoculta fecal en lactantes con proctocolitisalérgicainducidaporproteínaalimentaria. RevistaChilena de Pediatría, (ahead), 2018;6–12.
- [23] LozinskyAC, MoraisMB. Eosinophilic colitisinin fants. JPediatr (RioJ). 2014;90(1):16-21.