Generalization of sum of positive integral powers of natural numbers

B.Mahaboob ${ }^{1}$,Y.Harnath ${ }^{2}$,C.Narayana ${ }^{3}$,V.B.V.N.Prasad ${ }^{4}$, Y. Hari Krishna ${ }^{5}$,G.Balaji Prakash ${ }^{6}$
${ }^{1}$ Department of Mathematics, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur
A.P. India.E-mail:bmahaboob750@gmail.com
${ }^{2}$ Department of Mathematics, Audisankara College of Engineering \& Technology (Autonomous), Gudur, SPSR Nellore (Dt),A.P India.E-mail: harnath.yeddala@gmail.comn
${ }^{3}$ Department of Mathematics, Sri Harsha Institute of PG Studies, SPSR Nellore(Dt),A.P India. E-mail: nareva.nlr@gmail.com
${ }^{4}$ Department of Mathematics, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur A.P. India.E-mail: vbvnprasad@kluniversity.in
${ }^{5}$ Department of Mathematics, ANURAG Engineering College, Anathagiri (v), Kodad, Suryapet, Telangana, India.E-mail: yaraganihari@gmail.com
${ }^{6}$ Department of Mathematics, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, A.P. India.E-mail:balajiprakashgudala@gmail.com

Abstract

Sum of positive integral powers of first n natural numbers has been an interesting problem for many years. Mathematicians, students and research scholars have been attempting to crack this problem for decades. The primary objective of this talk is to generate a generalized result for an ancient interesting problem in the research field of Analytic Number Theory. That problem states that sum of $k^{\text {th }}$ powers of first n - natural number coincides with a unique a polynomial of degree $(k+1)$ in n over natural numbers. The existence and uniqueness of this polynomial are established using the principles of Linear Algebra. The innovative result derived here opens a way to write the formula for the sum of any positive integral power of first n- natural numbers.

Keywords: Rank of a Matrix, Simultaneous Nonhomogeneous Linear Equations, Cramer's Rule, Binomial Coefficients, Coefficient matrix

1.Introduction:

Thomas Harrlot (1560-1621) was the first mathematician who gave the generalized form of sum of positive integral powers of first n- natural numbers. Johann Faulhaber (1580-1635), a Germanmathematician, proposed formulas up to $17^{\text {th }}$ power and his work was considered a master piece at that time. However Johann Faulhaber failed to generalize his results. Pierre de Fermat (1601-1665) and Blaise Pascal (1623-1705) were credited with the innovation of these results in explicit form. But Jacob Bernoulli (1654-1705) gave the most significant generalized formula explicitly.In 2012, DohyoungRyangand Tony Thompson, in their research article, generated a formula for sum of positive integralpowers of first n - natural numbers.Janet Beery, in 2010, in his paper, discussed the sum of positive integral powers of first n - natural numbers. Do Tan Si ,in 2019, in research article proposed tables to compute Bernoulli numbers which are used in the generalization of sum of positive integral powers of first n - natural numbers

2. Existence and uniqueness of the generalized result:

Supposek, n are positive integers and

$$
\sum_{r=1}^{n} r^{k}=1^{k}+2^{k}+3^{k}+\ldots \ldots+n^{k}=A_{0} n^{k+1}+A_{1} n^{k}+A_{20} n^{k-1}+\ldots \ldots A_{k} n+A_{k+1}
$$

Here an assumption is being made that sum of k-th powers of first n-natural numbers coincides with a polynomial of degree $(k+1)$ inn over natural numbers. Replace n by $n+1$

$$
\begin{aligned}
\sum_{r=1}^{n+1} r^{k} & =1^{k}+2^{k}+3^{k}+\ldots \ldots+(n+1)^{k} \\
& =A_{0}(n+1)^{k+1}+A_{1}(n+1)^{k}+A_{2}(n+1)^{k-1}+\ldots \ldots . . A_{k}(n+1)+A_{k+1}
\end{aligned}
$$

Subtracting the latter from the former

$$
\begin{aligned}
& (n+1)^{k}=A_{0}\left[(n+1)^{k+1}-n^{k+1}\right] \\
& +A_{1}\left[(n+1)^{k}-n^{k}\right] \\
& +A_{2}\left[(n+1)^{k-1}-n^{k-1}\right] \\
& +A_{3}\left[(n+1)^{k-2}-n^{k-2}\right] \\
& +. \\
& +A_{k}\left[(n+1)^{1}-n^{1}\right] \\
& +A_{k+1}\left[(n+1)^{0}-n^{0}\right] \\
& =A_{0}\left[(k+1)_{c_{1}} n^{k}+(k+1)_{c_{2}} n^{k-1}+\ldots \ldots .+(k+1)_{c_{k}} n+1\right] \\
& +A_{1}\left[k_{c_{1}} n^{k-1}+k_{c_{2}} n^{k-2}+k_{c_{3}} n^{k-3}+\ldots \ldots .+k_{k-1} n+1\right] \\
& +A_{2}\left[(k-1)_{c_{1}} n^{k-2}+(k-1)_{c_{2}} n^{k-3}+\ldots \ldots .(k-1)_{c_{k-2}} n+1\right] \\
& +A_{3}\left[(k-2)_{c_{1}} n^{k-3}+(k-2)_{c_{2}} n^{k-4}+\ldots \ldots .(k-2)_{c_{k-3}} n+1\right] \\
& +. \\
& +A_{k-1}\left[2_{c_{1} .} n+1\right] \\
& +A_{k}
\end{aligned}
$$

$=\left[A_{0}\left(k+1_{c_{1}}\right)\right] n^{k}+\left[A_{0}\left(k+1_{c_{2}}\right)+A_{1} k_{c_{1}}\right] n^{k-1}$
$+\left[A_{0}\left(k+1_{c_{3}}\right)+A_{1} k_{c_{2}}+A_{2}(k-1)_{c_{1}}\right]^{k-2}$
$+\left[A_{0}\left(k+1_{c_{4}}\right)+A_{1} k_{c_{3}}+A_{2}(k-1)_{c_{2}}+A_{3}(k-2)_{c_{1}}\right] n^{k-3}$
$+\ldots .$.
$+\left[A_{0}\left(k+1_{c_{k}}\right)+A_{1} k_{c_{k-1}}+A_{2}(k-1)_{c_{k-2}}+A_{3}(k-2)_{c_{k-3}}+\ldots \ldots . .+A_{k-1} .2_{c_{1}}\right] n$
$+\left[A_{0}\left(k+1_{c_{k+1}}\right)+A_{1} k_{c_{k}}+A_{2}(k-1)_{c_{k-1}}+A_{3}(k-2)_{c_{k-2}}+\ldots \ldots .+A_{k-1} \cdot 2_{c_{21}}+A_{k} \cdot 1_{c_{1}}\right]$
Applying binomial expansion for LHS and comparing the like powers of n^{k} one can get
$k_{c_{0}}=A_{0}(k+1)_{c_{1}}$
$k_{c_{1}}=A_{0}(k+1)_{c_{2}}+A_{1} k_{c_{1}}$
$k_{c_{2}}=A_{0}(k+1)_{c_{3}}+A_{1} k_{c_{2}}+A_{2}(k-1){ }_{c}$
$k_{c_{3}}=A_{0}(k+1)_{c_{4}}+A_{1} k_{c_{3}}+A_{2}(k-1)_{c_{2}}+A_{3}(k-2)_{c_{1}}$
$k_{c_{i}}=A_{0}(k+1)_{c_{i+1}}+A_{1} k_{c_{i-1}}+A_{2}(k-1)_{c_{i-2}}+\ldots \ldots . A_{i}(k-i+1)_{c_{1}}$
$k_{c_{k-1}}=A_{0}(k+1)_{c_{k}}+A_{1} k_{c_{k-1}}+A_{2}(k-1)_{c_{k-2}}+\ldots \ldots . A_{k-1} 2_{c_{1}}$
$k_{c_{k}}=A_{0}(k+1)_{c_{k+1}}+A_{1} k_{c_{k}}+A_{2}(k-1)_{c_{k-1}}+\ldots . . . A_{k-1} 2_{c_{2}}+A_{k} 1_{c_{1}}$. .$(k+1)$

The ($k+1$) equations constitute a system of linear non-homogenous equations in ($k+1$)unknowns $A_{0}, \ldots . A_{k}$. In matrix algebra notations this system is written as
$\left[\begin{array}{cccccc}(k+1)_{c_{1}} & 0 & 0 & \cdot & 0 & 0 \\ (k+1)_{c_{2}} & k_{c_{1}} & 0 & \cdot & 0 & 0 \\ (k+1)_{c_{3}} & k_{c_{2}} & k-1_{c_{1}} & \cdot & 0 & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ (k+1)_{c_{k}} & k_{c_{k-1}} & k-1_{c_{k-2}} & \cdot & 2_{c_{1}} & 0 \\ (k+1)_{c_{k+1}} & k_{c_{k}} & k-1_{c_{k-1}} & \cdot & 2_{c_{2}} & 1_{c_{1}}\end{array}\right]\left[\begin{array}{c}A_{0} \\ A_{1} \\ A_{2} \\ \cdot \\ \cdot \\ A_{k}\end{array}\right]=\left[\begin{array}{c}k_{c_{0}} \\ k_{c_{1}} \\ k_{c_{2}} \\ \cdot \\ \cdot \\ k_{c_{k}}\end{array}\right]$
$\mathrm{AX}=\mathrm{B}$
$\Delta=\left|\begin{array}{cccccc}(k+1)_{c_{1}} & 0 & 0 & \cdot & 0 & 0 \\ (k+1)_{c_{2}} & k_{c_{1}} & 0 & \cdot & 0 & 0 \\ (k+1)_{c_{3}} & k_{c_{2}} & k-1_{c_{1}} & \cdot & 0 & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ (k+1)_{c_{k}} & k_{c_{k-1}} & k-1_{c_{k-2}} & \cdot & 2_{c_{1}} & 0 \\ (k+1)_{c_{k+1}} & k_{c_{k}} & k-1_{c_{k-1}} & \cdot & 2_{c_{2}} & 1_{c_{1}}\end{array}\right|=$ Determinant of Coefficient Matrix
$\Delta_{0}, \Delta_{1}, \ldots . . \Delta_{k}$ are obtained by replacing $1^{\text {st }}, 2^{\text {nd }} \ldots \ldots . .(\mathrm{k}+1)^{\text {th }}$ columns by the column matrix

$$
\begin{aligned}
& {\left[\begin{array}{c}
k_{c_{0}} \\
k_{c_{1}} \\
k_{c_{2}} \\
\cdot \\
\cdot \\
k_{c_{k}}
\end{array}\right]} \\
& \begin{aligned}
\Delta & =k+1_{c_{1}} \cdot k_{c_{1}} \cdot k-1_{c_{1}} \cdots \ldots .22_{c_{1}} \cdot 1_{c_{1}} \\
& =(k+1)!\neq 0 \text { for any } k \in N
\end{aligned}
\end{aligned}
$$

Since determinant of coefficient matrix is non zero and the number of equations is equal to number of unknowns, the above system of $(k+1)$-equations have a unique solution.

3. Formulas to compute the coefficients by Crammer's rule:

$A_{0}=\frac{\Delta_{0}}{\Delta}$
$A_{1}=\frac{\Delta_{1}}{\Delta}$
$A_{2}=\frac{\Delta_{2}}{\Delta}$

$$
A_{k}=\frac{\Delta_{k}}{\Delta}
$$

By convention A_{k+1} is taken as 0 .

As Δ is non -zero the above formulas prove the existence of the coefficients $A_{0}, A_{1}, A_{2} \ldots . . A_{k}$

4. Special Cases

Case $\mathbf{i})($ For $\mathbf{k}=1$)

$\sum_{r=1}^{n} r^{1}=1^{1}+2^{1}+3^{1}+\ldots \ldots+n^{1}=\sum n$
$1_{c_{0}}=A_{0} \cdot 2_{c_{1}} \Rightarrow 1=A_{0} \cdot 2 \Rightarrow A_{0}=\frac{1}{2}$
$1_{c_{1}}=\frac{1}{2} \cdot 2_{c_{2}}+A_{1} \cdot 1_{c_{1}} \Rightarrow A_{1}=\frac{1}{2}$
$\therefore 1^{1}+2^{2}+3^{1}+\ldots \ldots+n^{1}=\frac{1}{2} n^{2}+\frac{1}{2} n=\frac{n(n+1)}{2}$

Case ii) (For k=2)

$$
\begin{aligned}
& \sum_{r=1}^{n} r^{2}=1^{2}+2^{2}+3^{2}+\ldots \ldots+n^{2}=\sum n^{2}=A_{0} n^{3}+A_{1} n^{2}+A_{2} n \\
& 2_{c_{0}}=A_{0} \cdot 3_{c_{1}} \Rightarrow A_{0}=\frac{1}{3} \\
& 2_{c_{1}}=A_{0} \cdot 3_{c_{2}}+A_{1} \cdot 2_{c_{1}} \Rightarrow 2=A_{0} 3+A_{1} 2 \Rightarrow A_{1}=\frac{1}{2} \\
& 2_{c_{2}}=A_{0} 3_{c_{3}}+A_{1} 2_{c_{2}}+A_{2} \cdot 1_{c_{1}} \\
& 1=A_{0}+A_{1}+A_{2} \Rightarrow A_{2}=\frac{1}{6} \\
& 1^{2}+2^{2}+3^{2}+\ldots \ldots . n^{2}=\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n=\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

Case iii) (For k=3)

$$
\begin{aligned}
& \sum_{r=1}^{n} r^{3}=1^{3}+2^{3}+3^{3}+\ldots .+n^{3}=A_{0} n^{4}+A_{1} n^{3}+A_{2} n^{2}+A_{3} n \\
& 3_{c_{0}}=A_{0} 4_{c_{1}} \Rightarrow A_{0}=\frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
& 3_{c_{1}}=A_{0} 4_{c_{2}}+A_{1} 3_{c_{1}} \Rightarrow A_{1}=\frac{1}{2} \\
& 3_{c_{2}}=A_{0} 4_{c_{3}}+A_{1} 3_{c_{2}}+A_{2} 2_{c_{1}} \Rightarrow A_{2}=\frac{1}{4} \\
& 3_{c_{3}}=A_{0} 4_{c_{4}}+A_{1} 3_{c_{3}}+A_{2} 2_{c_{2}}+A_{3} 1_{c_{1}} \Rightarrow A_{3}=0 \\
& \therefore 1^{3}+2^{3}+3^{3}+\ldots .+n^{3}=\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} n^{2}=\frac{n^{2}(n+1)^{2}}{4}
\end{aligned}
$$

Caseiv) (For k=4)

$$
\begin{aligned}
& \sum_{r=1}^{n} r^{4}=1^{4}+2^{4}+3^{4}+\ldots .+n^{4}=A_{0} n^{5}+A_{1} n^{4}+A_{2} n^{3}+A_{3} n^{2}+A_{4} n \\
& 4_{c_{0}}=A_{0} 5_{c_{1}} \Rightarrow A_{0}=\frac{1}{5} \\
& \begin{array}{c}
4_{c_{1}}=A_{0} 5_{c_{2}}+A_{1} 4_{c_{1}} \Rightarrow 4=A_{0} \cdot 10+A_{1} 4 \\
\quad \Rightarrow 4=2+4 A_{1} \Rightarrow A_{1}=\frac{1}{2}
\end{array}
\end{aligned}
$$

$$
4_{c_{2}}=A_{0} \cdot 5_{c_{3}}+A_{1} \cdot 4_{c_{2}}+A_{2} \cdot 3_{c_{1}}
$$

$$
6=2+3+A_{2}(3) \Rightarrow A_{2}=\frac{1}{3}
$$

$$
4_{c_{3}}=A_{0} 5_{c_{4}}+A_{1} \cdot 4_{c_{3}}+A_{2} \cdot 3_{c_{2}}+A_{3} \cdot 2_{c_{1}}
$$

$$
4=1+2+1+A_{3}(2) \Rightarrow A_{3}=0
$$

$$
4_{c_{4}}=A_{0}+A_{1}+A_{2}+A_{3}+A_{4}
$$

$$
1=\frac{1}{5}+\frac{1}{2}+\frac{1}{3}+A_{4} \Rightarrow A_{4}=1-\left(\frac{1}{5}+\frac{1}{2}+\frac{1}{3}\right)
$$

$$
A_{4}=-\frac{1}{30}
$$

$$
1^{4}+2^{4}+3^{4}+\ldots . . n^{4}=\frac{n^{5}}{5}+\frac{n^{4}}{2}+\frac{n^{3}}{3}-\frac{1}{30} n
$$

Case v) (For k=5)

$\sum_{r=1}^{n} r^{5}=1^{5}+2^{5}+3^{5}+\ldots \ldots .+n^{5}=A_{0} n^{6}+A_{1} n^{5}+A_{2} n^{4}+A_{3} n^{3}+A_{4} n^{2}+A_{5} n$
$5_{c_{0}}=A_{0}\left(6_{c_{1}}\right) \Rightarrow A_{0}=\frac{1}{6}$

$$
\begin{aligned}
& 5_{c_{1}}=A_{0} 6_{c_{2}}+A_{1} 5_{c_{1}} \Rightarrow 5 \Rightarrow A_{1}=\frac{1}{2} \\
& 5_{c_{2}}=A_{0} 6_{c_{3}}+A_{1} 5_{c_{2}}+A_{2} 4_{c_{1}} \Rightarrow A_{2}=\frac{5}{12} \\
& 5_{c_{3}}=A_{0} 6_{c_{4}}+A_{1} 5_{c_{3}}+A_{2} 4_{c_{2}}+A_{3} 3_{c_{1}} \\
& 10=\frac{5}{2}+5+\frac{5}{2}+3 . A_{3} \Rightarrow A_{3}=0 \\
& 5_{c_{4}}=A_{0} 6_{c_{5}}+A_{1} 5_{c_{4}}+A_{2} 4_{c_{3}}+A_{3} 3_{c_{2}}+A_{4} 2_{c_{1}} \\
& 5=1+\frac{5}{2}+\frac{5}{3}+A_{4} 2 \Rightarrow 4-\frac{5}{2}-\frac{5}{3}=2 A_{4} \Rightarrow A_{4}=-\frac{1}{12} \\
& 5 c_{c_{5}}=A_{0} 6_{c_{6}}+A_{1} 5_{c_{5}}+A_{2} 44_{c_{4}}+A_{3} 3_{c}+A_{4} 2_{c_{2}}+A_{5} .1_{c_{1}} \\
& 1=\frac{1}{6}+\frac{1}{2}+\frac{5}{12}-\frac{1}{12}+A_{5} \Rightarrow A_{5}=0 \\
& \therefore 1^{5}+2^{5}+3^{5}+\ldots . .+n^{5}=\frac{1}{6} n^{6}+\frac{1}{2} n^{5}+\frac{5}{12} n^{4}-\frac{1}{12} n^{2}
\end{aligned}
$$

5. Simultaneous Non homogenous Liner equations:

$$
\quad k-3_{c_{1}}
$$

(Table 1) (Binomial Triangle) (Coefficients)

Variables	RHS constants
A_{0}	$k_{c_{0}}$
$\mathrm{~A}_{1}$	$k_{c_{1}}$
$\mathrm{~A}_{2}$	$k_{c_{2}}$

Table 2

A_{3}	$k_{c_{3}}$
A_{k}	$k_{c_{k}}$

From Tables (1) and (2) one can write simultaneous linear non-homogenous equations.
$A_{0}(k+1)_{c_{1}}=k_{c_{0}}$
$A_{0}(k+1)_{c_{2}}+A_{1} \cdot k_{c_{1}}=k_{c_{1}}$
$A_{0}(k+1)_{c_{3}}+A_{1} k_{c_{2}}+A_{2}(k-1)_{c_{1}}=k_{c_{2}}$
$A_{0}(k+1)_{c_{k+1}}+A_{1} k_{c_{k}}+A_{2}(k-1)_{c_{k-1}}+\ldots \ldots .+A_{k-1} 2_{c_{2}}+A_{k} 1_{c_{1}}=k_{c_{k}}$
It is interesting to note that

$$
A_{0}=\frac{1}{k+1}
$$

$$
A_{1}=\frac{1}{2}
$$

$$
A_{2}=\frac{k}{12}
$$

$$
A_{3}=0
$$

$$
A_{4}=\frac{-k(k-1)(k-2)}{720} \text { etc. }
$$

From $(k+1)^{\text {th }}$ equation, one can observe thatsum of $\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}, \ldots \ldots . \mathrm{A}_{k}$ is 1 .
$\mathrm{A}_{0}+\mathrm{A}_{1}+\mathrm{A}_{2}+\ldots+\mathrm{A}_{\mathrm{k}}=1=>\mathrm{A}_{\mathrm{k}+1}=0$.

6. Conclusion and Future research:

The above conversation provides answers to the most interesting questions in the research field of Analytical Number Theory.

Q : Is the sum of positive integral powers of first n - natural numbers is a polynomial in n over natural numbers?

A: Yes
Q : Is such polynomial unique?

A: Yes.
The generalized result generated in this conversation certainly opens a way for young researchers and they can have a glance on these innovative ideas and may derive some more interesting results.

References:

1. DohyoungRyang, Tony Thompson (2012), "Sum of positive integral powers "August 2012 Mathematics Teacher 106 (1):71:77.
2. Janet Beery (2010), "Sum of powers of positive integers -conclusion", Convergence,July 2010,MAA (Mathematics Teachers America)
3. Do Tan Si,"The PowersSums, Bernoullinumbers, Bernoulli Polynomials Rethinked", Applied mathematics 10.03(2019):100-112, Scientific Research
4.Reznick,Bruce and Rouse j ," On the sums of two cubes", International Journal of number theory,7(2011),1863-1882,MR 2854220
5.Mathematical Masterpieces, by Arthur Knoebel, et al., Springer (2007), ISBN 978-0-387-33060-0. An English translation of the Potestatum appears on pp 32-37 (from the French in the 1923 Grands Écrivains edition). Good discussion is had just before and after the Potestatum itself.
6."Pascal's Formula for the Sums of Powers of the Integers", by Carl B. Boyer, Scripta Mathematica 9 (1943), pp 237-244. Good historical background on antecedents to Pascal work on sums of powers. Contains an English translation of some of the Potestatum.
7.Pascal's Arithmetical Triangle, by A. W. F. Edwards, The Johns Hopkins University Press (2002, originally published 1987), ISBN 0-8018-6946-3.
