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Abstract 

Sum of positive integral powers of first n natural numbers has been an interesting problem for 

many years. Mathematicians, students and research scholars have been attempting to crack this 

problem for decades. The primary objective of this talk is to generate a generalized result for an 

ancient interesting problem in the research field of Analytic Number Theory. That problem states 

that sum of kth powers of first n- natural number coincides with a unique a polynomial of degree 

(k+1) in n over natural numbers. The existence and uniqueness of this polynomial are 

established using the principles of Linear Algebra.  The innovative result derived here opens a 

way to write the formula for the sum of any positive integral power of first n- natural numbers. 

Keywords: Rank of a Matrix, Simultaneous Nonhomogeneous Linear Equations, Cramer's Rule, 

Binomial Coefficients, Coefficient matrix 

1.Introduction: 

Thomas Harrlot (1560-1621) was the first mathematician who gave the generalized form of sum 

of positive integral powers of first n- natural numbers. Johann Faulhaber (1580-1635), a 

Germanmathematician, proposed formulas up to 17th power and his work was considered a 

master piece at that time. However Johann Faulhaber failed to generalize his results. Pierre de 

Fermat (1601-1665) and Blaise Pascal (1623-1705) were credited with the innovation of these 

results in explicit form. But Jacob Bernoulli (1654-1705) gave the most significant generalized 

formula explicitly.In 2012, DohyoungRyangand Tony Thompson, in their research article, 

generated a formula for sum of positive integralpowers of first n- natural numbers.Janet Beery, in 

2010, in his paper, discussed the sum of positive integral powers of first n – natural numbers. Do 

Tan Si,in 2019,in research article proposed tables to compute Bernoulli numbers which are used 

in the generalization of sum of positive integral powers of first n- natural numbers 
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2. Existence and uniqueness of the generalized result: 

Supposek,n are positive integers and  
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Here an assumption is being made that sum of k-th powers of first n –natural numbers coincides 

with a polynomial of degree (k+1) inn over natural numbers. Replace n by n+1 
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Subtracting the latter from the former 
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Applying binomial expansion for LHS and comparing the like powers of nk one can get  
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The (k+1) equations constitute a system of linear non-homogenous equations in (k+1)- 

unknowns kAA ,.....0 . In matrix algebra notations this system is written as  
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AX=B 
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 = Determinant of Coefficient Matrix 

k ,....., 10  are obtained by replacing 1st,2nd…….(k+1)th columns by the column matrix 
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Since determinant of coefficient matrix is non zero and the number of equations is equal to 

number of unknowns, the above system of (k+1) –equations have a unique solution. 

3. Formulas to compute the coefficients by Crammer’s rule: 
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By convention 1kA is taken as 0. 
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As   is non -zero the above formulas prove the existence of the coefficients kAAAA .....,, 210  

4. Special Cases 

Case i)(For k=1) 
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Case ii) (For k=2) 
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Case iii) (For k=3) 
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Caseiv) (For k=4) 
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Case v) (For k=5) 
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5. Simultaneous Non homogenous Liner equations: 
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(Table 1) (Binomial Triangle) (Coefficients) 

Variables RHS constants 

A0 
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Table 2 

From Tables (1) and (2) one can write simultaneous linear non-homogenous equations. 
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It is interesting to note that   
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From (k+1) thequation, one can observe thatsum of A0,A1,A2,……Ak   is 1. 

A0+A1+A2+…+Ak=1=>Ak+1=0. 

6. Conclusion and Future research: 

The above conversation provides answers to the most interesting questions in the research field 

of Analytical Number Theory. 

Q: Is the sum of positive integral powers of first n – natural numbers is a polynomial in  n over 

natural numbers?  

A: Yes 

Q: Is such polynomial unique? 
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A: Yes. 

The generalized result generated in this conversation certainly opens a way for young researchers 

and they can have a glance on these innovative ideas and may derive some more interesting 

results. 
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