K-DIMENSIONAL INTUITIONISTIC MULTI FUZZY SUBNEAR-RING

A. Alphonse Anitha¹, Dr. M. Mary JansiRani², Dr. S. Rexlin Jeyakumari³, I. Shiny Bridgette⁴

^{1,2,3,4}Assistant Professors, PG & Research Department of Mathematics, Holy Cross College (Autonomous), Tiruchirappalli- 600 002

ABSTRACT: In this paper we introduce the concept of k-dimensional intuitionistic multi fuzzy subnear-ring, k-dimensional intuitionistic multi fuzzy ideals and k-dimensional anti intuitionistic multi fuzzy ideals. We give some proposition related to the above ideas.

Key words: Fuzzy subring, Multi Fuzzy Subring, Intuitionistic Multi Fuzzy Subring, K-Dimensional Intuitionistic Multi Fuzzy Subring

1. INTRODUCTION

The theory of fuzzy set was introduced by Zadeh [10], applying which Rosenfeld [9] in 1971 defined fuzzy subgroups. Salah Abou Zaid [11] introduced the theory of a fuzzy subnear ring and fuzzy ideals of a near-ring. Fuzzy ideals of a ring and a characterization of a regular ring studied by Lui [8]. The notion of fuzzy ideals of near rings with interval valued membership functions introduced by B.Davvaz [3] in 2001. In 2001, Kyung Ho Kim and Young B.Jun [7] in paper entitled "Normal fuzzy R-subgroups in near-ring" introduced the concept of a normal fuzzy R-subgroup in near-ring and explored some related properties . In 2005, Syam Prasad Kuncham and Satyanarayana Bhavanari in paper entitled "Fuzzy Prime ideal of a Gamm-near-ring" introduced fuzzy prime ideal in Γ -near rings. The anti-fuzzy ideals of near-ring defined by F.A.Azam, A.A.Mamun and F.Nasrin. T.L.Dewangan, Prof.M.M.Singh[4]. In this paper entitled K-dimensional multi fuzzy subnear-ring and anti-fuzzy ideals of near-ring and developed some related properties.

2. K-DIMENSIONAL INTUITIONISTIC MULTI FUZZY SUBNEAR RING OF A RING Definition:2.1

Let R be a near ring . Let A be a k-dimensional intuitionistic multi-fuzzy subset of a near ring of a ring R . We say a k-dimensional intuitionistic multi fuzzy subnear-ring of R if

(i) $\mu_{A_i}(x - y) \ge \min\{\mu_{A_i}(x), \mu_{A_i}(y)\}$ $Y_{A_i}\tau(x - y) \le \max\{Y_{A_i}\tau(x), Y_{A_i}\tau(y)\}$ (ii) $\mu_{A_i}(xy) \ge \min\{\mu_{A_i}(x), \mu_{A_i}(y)\}$ $Y_{A_i}\tau(xy) \le \max\{Y_{A_i}\tau(x), Y_{A_i}\tau(y)\} \quad \forall x, y \in R \text{ and } i=1,2....k$

Definition:2.2

Let R be a near ring and A be a k-dimensional intuitionistic multi fuzzy subset of a ring R. A is called a k-dimensional intuitionistic multi fuzzy left ideal of R if A is a k-dimensional intuitionistic multi fuzzy subnear-ring of R and satisfies for all $x, y \in R$ and i=1,2,....k.

(i)
$$\mu_{A_i}(x-y) \ge \min\{\mu_{A_i}(x), \mu_{A_i}(y)\}$$

$$\begin{split} &Y_{A_{i}}\tau(x-y) \leq \max \left\{ Y_{A_{i}}\tau(x), Y_{A_{i}}\tau(y) \right\} \\ &(ii) \ \mu_{A_{i}}(y+x-y) \geq \mu_{A_{i}}(x) \\ &Y_{A_{i}}\tau(x+y-x) \leq Y_{A_{i}}\tau(y) \} \\ &(iii) \ \mu_{A_{i}}(xy) \geq \mu_{A_{i}}(y) \ or \ \mu_{A_{i}}(xy) \geq \mu_{A_{i}}(x) \\ &Y_{A_{i}}\tau(xy) \leq Y_{A_{i}}\tau(y) \ or \ Y_{A_{i}}\tau(xy) \leq Y_{A_{i}}\tau(x) \end{split}$$

Definition: 2.3

Let R be a near ring and A be a k-dimensional intuitionistic multi fuzzy subset of a ring R. A is called a k-dimensional intuitionistic multi fuzzy right ideal of R if A is a k-dimensional intuitionistic multi fuzzy subnear-ring of R and satisfies for all $x, y \in R$, i=1,2,...,k.

(i)
$$\mu_{A_i}(x-y) \ge \min\{\mu_{A_i}(x), \mu_{A_i}(y)\}$$

 $Y_{A_i}\tau(x-y) \le \max\{Y_{A_i}\tau(x), Y_{A_i}\tau(y)\}$

(*ii*)
$$\mu_{A_i}(xy) \ge \min\{\mu_{A_i}(x), \mu_{A_i}(y)\}$$

 $Y_{A_i}\tau(xy) \le \max\{Y_{A_i}\tau(x), Y_{A_i}\tau(y)\}$

(iii)
$$\mu_{A_i}((x+i)y - xy) \ge \mu_{A_i}(i)$$

$$Y_{A_i}\tau((x+i)y - xy) \le Y_{A_i}\tau(i)$$

(*iv*)
$$\mu_{A_i}(y + x - y) \ge \mu_{A_i}(x)$$

 $Y_{A_i}\tau(x + y - x) \le Y_{A_i}\tau(y)$

Proposition:2.4

If a k-dimensional intuitionistic multi fuzzy subsets μ_{A_i} , Y_{A_i} of R satisfies the properties $\mu_{A_i}(x - y) \ge \min \{\mu_{A_i}(x), \mu_{A_i}(y)\}, Y_{A_i}\tau(x - y) \le \max \{Y_{A_i}\tau(x), Y_{A_i}\tau(y)\}$ then 1. $\mu_{A_i}(0_R) \ge \mu_{A_i}(x)$ $Y_{A_i}\tau(0_R) \le Y_{A_i}\tau(x)$ 2. $\mu_{A_i}(-x) = \mu_{A_i}(x)$ $Y_{A_i}\tau(-x) = Y_{A_i}\tau(x)$ for all $x, y \in R$ and i=1,2,....k

Proof:

We have that for any $x \in R$

$$1. \mu_{A_{i}}(0_{R}) = \mu_{A_{i}}(x - x)$$

$$\geq \min\{\mu_{A_{i}}(x), \mu_{A_{i}}(x)\}$$

$$= \mu_{A_{i}}(x)$$
Hence, $\mu_{A_{i}}(0_{R}) \geq \mu_{A_{i}}(x)$

$$Y_{A_{i}}\tau(0_{R}) = Y_{A_{i}}\tau(x - x)$$

$$\leq \max\{Y_{A_{i}}\tau(x), Y_{A_{i}}\tau(x)\}$$

$$= Y_{A_{i}}\tau(x)$$
Hence, $Y_{A_{i}}\tau(0_{R}) \leq Y_{A_{i}}\tau(x)$

$$2. \mu_{A_{i}}(-x) = \mu_{A_{i}}(0_{R} - x)$$

$$\geq \min\{\mu_{A_{i}}(0_{R}), \mu_{A_{i}}(x)\}$$

$$= \mu_{A_{i}}(x)$$

Hence,
$$\mu_{A_i}(-x) = \mu_{A_i}(x)$$

$$Y_{A_i}\tau(-x) = Y_{A_i}\tau(0_R - x)$$

$$\leq \max \left\{ Y_{A_i}\tau(0_R), Y_{A_i}\tau(x) \right\}$$

$$= Y_{A_i}\tau(x)$$
Hence,
$$Y_{A_i}\tau(-x) = Y_{A_i}\tau(x)$$

Proposition:2.5

Let μ_{A_i} and Y_{A_i} be k-dimensional intuitionistic multi fuzzy ideals of R. If $\mu_{A_i}(x - y) = \mu_{A_i}(0_R)$ then $\mu_{A_i}(x) = \mu_{A_i}(y)$ and If $Y_{A_i}(x - y) = Y_{A_i}(0_R)$ then $Y_{A_i}\tau(x) = Y_{A_i}\tau(y)$.

Proof:

Assume that $\mu_{A_i}(x - y) = \mu_{A_i}(0_R)$ for all $x, y \in R$ and i=1,2,.....k Then $\mu_{A_i}(x) = \mu_{A_i}(x - y + y)$ $\geq \min\{\mu_{A_i}(x-y), \mu_{A_i}(y)\}$ $= \min \{ \mu_{A_i}(0_R), \mu_{A_i}(y) \}$ $= \mu_{A_i}(y)$ Thus, $\mu_{A_i}(x) \ge \mu_{A_i}(y)$ (1)Also, $\mu_{A_i}(y) = \mu_{A_i}(y - x + x)$ $\geq \min\{\mu_{A_i}(y-x), \mu_{A_i}(x)\}$ $= \min \{ \mu_{A_i}(0_R), \mu_{A_i}(x) \}$ $= \mu_{A_i}(x)$ Hence, $\mu_{A_i}(y) \ge \mu_{A_i}(x)$ (2)From (1) and (2) $\mu_{A_i}(x) = \mu_{A_i}(y)$. Assume that $Y_{A_i}\tau(x-y) = Y_{A_i}\tau(\mathbf{0}_R)$ for all $x, y \in R$, i=1,2,....k $Y_{A_i}\tau(x) = Y_{A_i}\tau(x - y + y)$ $\leq \max\left\{Y_{A_i}\tau(x-y), Y_{A_i}\tau(y)\right\}$ $= Y_{A} \tau(y)$ $Y_{A_i}\tau(x) = Y_{A_i}\tau(y)$ Hence, (3)We have $Y_{A_i}\tau(y) = Y_{A_i}\tau(y - x + x)$ $\leq \max\left\{Y_{A_i}\tau(y-x), Y_{A_i}\tau(x)\right\}$ $= \max \left\{ Y_{A_i} \tau(\mathbf{0}_R), Y_{A_i} \tau(x) \right\}$ $= Y_{A_i} \tau(x)$ Hence, $Y_{A_i}\tau(y) \le Y_{A_i}\tau(x)$ (4)From (3) and (4) $Y_{A_i}\tau(x) = Y_{A_i}\tau(y)$. **Proposition : 2.6**

If $\mu_{A_i}: \mathbb{R} \to [0,1]$ and $Y_{A_i}: \mathbb{R} \to [0,1]$ are k-dimensional intuitionistic multi fuzzy ideals of near-ring \mathbb{R} with multiplicative identity $\mathbf{1}_R$. Then $\mu_{A_i}(\mathbf{0}_R) \ge \mu_{A_i}(x) \ge \mu_{A_i}(\mathbf{1}_R)$ and $Y_{A_i}\tau(\mathbf{0}_R) \le Y_{A_i}\tau(x) \le Y_{A_i}\tau(\mathbf{1}_R)$ for all $x \in R$ i=1,2,.....k.

Proof :

We know that ,
$$\mu_{A_i}(x) = \mu_{A_i}(-x)$$

And now , $\mu_{A_i}(0_R) = \mu_{A_i}(x-x)$
 $= \mu_{A_i}(x + (-x))$
 $\geq \min\{\mu_{A_i}(x), \mu_{A_i}(-x)\}$
 $= \mu_{A_i}(x)$ (1)
Also , $\mu_{A_i}(0_R) \geq \mu_{A_i}(x, 1_R)$
 $\geq \min\{\mu_{A_i}(x), \mu_{A_i}(1_R)\}$
 $= \mu_{A_i}(1_R)$ (2)
From (1) and (2) $\mu_{A_i}(0_R) \geq \mu_{A_i}(x) \geq \mu_{A_i}(1_R)$, for all $x \in R$, i=1,2,.....k.
We know that $Y_{A_i}\tau(x) = Y_{A_i}\tau(-x)$
And now $Y_{A_i}\tau(0_R) = Y_{A_i}\tau(x - x)$
 $= Y_{A_i}\tau(x) + (-x))$
 $\leq \max\{Y_{A_i}\tau(x), Y_{A_i}\tau(-x)\}$
 $= Y_{A_i}\tau(x)$ (3)
Also , $Y_{A_i}\tau(x) = Y_{A_i}\tau(1_R)$ (4)

From (3) and (4) $Y_{A_i}\tau(\mathbf{0}_R) \leq Y_{A_i}\tau(x) \leq Y_{A_i}\tau(\mathbf{1}_R)$ for all $\in \mathbb{R}$, i=1,2,....k.

Definition: 2.7

Let R be a near ring and A be a k-dimensional intuitionistic multi fuzzy subset of R. A is called a k-dimensional Anti intuitionistic multi fuzzy left ideal of R if A is a k-dimensional intuitionistic multi fuzzy subnear ring of R and satisfies for all $x, y \in R$, i=1,2,.....k.

$$\begin{array}{ll} (i) & \mu_{A_{i}}(x-y) \leq \max \left\{ \mu_{A_{i}}(x), \mu_{A_{i}}(y) \right\} \\ & Y_{A_{i}}\tau(x-y) \geq \min \left\{ Y_{A_{i}}^{T}\tau(x), Y_{A_{i}}^{T}\tau(y) \right\}. \\ (ii) & \mu_{A_{i}}(y+x-y) \leq \mu_{A_{i}}(x) \\ & Y_{A_{i}}\tau(x+y-x) \geq Y_{A_{i}}\tau(y). \\ (ii) & \mu_{A_{i}}(xy) \leq \mu_{A_{i}}(y) \text{ or } \mu_{A_{i}}(xy) \leq \mu_{A_{i}}(x) \end{array}$$

$$Y_{A_i}\tau(xy) \ge Y_{A_i}\tau(y) \quad \text{or} \ Y_{A_i}\tau(xy) \ge Y_{A_i}\tau(x).$$

Definition:2.8

Let R be a near ring and A be a k-dimensional intuitionistic multi fuzzy subset of R. A is called a k-dimensional Anti intuitionistic multi fuzzy left ideal of R if A is a k-dimensional intuitionistic multi fuzzy subnear ring of R and satisfies for all $x, y \in R$, i=1,2,...,k.

$$\begin{array}{ll} (i) & \mu_{A_{i}}(x-y) \leq \max \left\{ \mu_{A_{i}}(x), \mu_{A_{i}}(y) \right\} \\ & Y_{A_{i}}^{T}(x-y) \geq \min \left\{ Y_{A_{i}}^{T}(x), Y_{A_{i}}^{T}(y) \right\}. \\ (ii) & \mu_{A_{i}}(xy) \leq \max \left\{ \mu_{A_{i}}(x), \mu_{A_{i}}(y) \right\} \\ & Y_{A_{i}}^{T}(xy) \geq \min \left\{ Y_{A_{i}}^{T}(x), Y_{A_{i}}^{T}(y) \right\}. \\ (iii) & \mu_{A_{i}}(y+x-y) \leq \mu_{A_{i}}(x) \\ & Y_{A_{i}}^{T}(x+y-x) \geq Y_{A_{i}}^{T}(y). \\ (iv) & \mu_{A_{i}}((x+i)y-xy) \leq \mu_{A_{i}}(i) \\ & Y_{A_{i}}^{T}((x+i)y-xy) \geq Y_{A_{i}}^{T}(i). \end{array}$$

3. FOR EVERY K-DIMENSIONAL ANTI INTUITIONISTIC MULTI FUZZY IDEALS

Properties 3.1

$$\mu_{A_i}$$
 and Y_{A_i} of R,
(1) $\mu_{A_i}(0_R) \le \mu_{A_i}(x)$
 $Y_{A_i}\tau(0_R) \ge Y_{A_i}\tau(x)$ for all $x \in R$, $i=1,2,...,k$
(2) $\mu_{A_i}(x) = \mu_{A_i}(-x)$
 $Y_{A_i}\tau(x) = Y_{A_i}\tau(-x)$ for all $x \in R$, $i=1,2,...,k$
(3) $\mu_{A_i}(x - y) = \mu_{A_i}(0_R) => \mu_{A_i}(x) = \mu_{A_i}(y)$
 $Y_{A_i}\tau(x - y) = Y_{A_i}\tau(0_R) => Y_{A_i}\tau(x) = Y_{A_i}\tau(y)$ for all $x, y \in R$, $i=1,2,...,k$.
Proof :
(1) $\mu_{A_i}(0_R) = \mu_{A_i}(x - x)$
 $\le \max \{\mu_{A_i}(x), \mu_{A_i}(x)\}$
 $= \mu_{A_i}(x)$
Hence $\mu_{A_i}(0_R) \le \mu_{A_i}\tau(x - x)$
 $\ge \min \{Y_{A_i}\tau(x), Y_{A_i}\tau(x)\}$
 $= Y_{A_i}\tau(x)$
Hence, $Y_{A_i}\tau(0_R) \ge Y_{A_i}\tau(x)$
(2) $\mu_{A_i}(-x) = \mu_{A_i}(0_R - x)$
 $\le \max \{\mu_{A_i}(0_R), \mu_{A_i}(x)\}$
 $= \mu_{A_i}(x)$

$$\begin{split} &Y_{A_{i}}\tau(-x) = Y_{A_{i}}\tau(0_{R} - x) \\ &\geq \min \left\{Y_{A_{i}}\tau(0_{R}), Y_{A_{i}}\tau(x)\right\} \\ &= Y_{A_{i}}\tau(x) \\ &\text{Hence, } \mu_{A_{i}}(-x) = \mu_{A_{i}}(x) \\ &Y_{A_{i}}\tau(-x) = Y_{A_{i}}\tau(x) \\ (3). Assume that & \mu_{A_{i}}(x - y) = \mu_{A_{i}}(0_{R}) \text{ and } Y_{A_{i}}\tau(x - y) = Y_{A_{i}}\tau(0_{R}) \text{ for all } x, y \in R \\ &\text{Then, } \mu_{A_{i}}(x) = \mu_{A_{i}}(x - y + y) \\ &\leq \max \left\{\mu_{A_{i}}(0_{R}), \mu_{A_{i}}(y)\right\} \\ &= \max \left\{\mu_{A_{i}}(y) & (1) \\ &\text{Also, } \mu_{A_{i}}(y) = \mu_{A_{i}}(y - x + x) \\ &\leq \max \left\{\mu_{A_{i}}(0_{R}), \mu_{A_{i}}(x)\right\} \\ &= \mu_{A_{i}}(x) \\ &\mu_{A_{i}}(y) \leq \mu_{A_{i}}(x) \\ &\mu_{A_{i}}(y) \leq \mu_{A_{i}}(x) \\ &= \mu_{A_{i}}(x) \\ &\mu_{A_{i}}(x) = \mu_{A_{i}}(y) \\ &\text{Assume that } Y_{A_{i}}\tau(x - y) = Y_{A_{i}}\tau(0_{R}) \text{ for all } x, y \in R \text{ and } i=1,2,....,k . \\ &\text{Then, } Y_{A_{i}}\tau(x) = Y_{A_{i}}\tau(x - y + y) \\ &\geq \min \left\{Y_{A_{i}}\tau(x - y), Y_{A_{i}}\tau(y)\right\} \\ &= \max \left\{\lambda_{A_{i}}(0_{R}), Y_{A_{i}}\tau(y)\right\} \\ &= \min \left\{Y_{A_{i}}\tau(y) & (3) \\ &Y_{A_{i}}\tau(y) = Y_{A_{i}}\tau(y - x + x) \\ &\geq \min \left\{Y_{A_{i}}\tau(y - x), Y_{A_{i}}\tau(x)\right\} \\ &\geq \min \left\{Y_{A_{i}}\tau(y - x), Y_{A_{i}}\tau(x)\right\} \\ &\geq \min \left\{Y_{A_{i}}\tau(y - x), Y_{A_{i}}\tau(x)\right\} \\ &\geq \min \left\{Y_{A_{i}}\tau(y) & (4) \\ &\text{From (3) and (4) } Y_{A_{i}}\tau(x) = Y_{A_{i}}\tau(y). \\ \end{split}$$

References

[1] M. Akram, Anti fuzzy Lie ideals of Lie algebras, Quasigroups Related Systems 14 (2006)123-132

[2] Y. Bingxue, Fuzzy semi-ideal and generalized fuzzy quotient ring, Iran. J. Fuzzy Syst. 5 (2008) 87-92.

[3] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353

[4] S. A. Zaid, On fuzzy ideals and fuzzy quotient rings of a ring, Fuzzy Sets and Systems 59(1993) 205-210

[5] M. Zhou, D. Xiang and J. Zhan, Onanti fuzzy ideals of ;-rings, Ann. Fuzzy Math. Inform.

[6] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512-517.

[7] W. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 8 (1982) 133-139.

[8] T. K. Dutta and B. K. Biswas, Fuzzy ideals of near-rings, Bull. Calcutta Math. Soc.,89(1997), 447–456.

[9] S.M. Hong, Y.B. Jun, H.S. Kim, Fuzzy ideals in near-rings, Bulletin of KoreanMathematical Society, 35(3), (1998), 455–464

[10] B.Davvaz, Fuzzy ideals of near-rings with interval valued membership functions, Journal of Sciences, Islamic republic of Iran, 12(2001), no. 2, 171–175. [11] K. H. Kim and Y.B. Jun, Anti fuzzy ideals in near rings, Iranian Journal of FuzzySystems, Vol. 2 (2005), 71–80.