$\left(\boldsymbol{r}^{*} \boldsymbol{g}^{*}\right)^{* *}$-closed sets in topological spaces

N. Meenakumari \&T.Indira

Associate professor, PG \& Research Department of Mathematics, SeethalakshmiRamaswami College,Trichy. Email. Id:meenamega25@gmail.com

Abstract

The aim of this paper is to introduce a new class of closed sets namely $\left(\mathrm{r}^{*} \mathrm{~g}^{*}\right)^{* *}$-closed sets which is obtained by generalizing ($\left.\mathrm{r}^{*} \mathrm{~g}^{*}\right)^{*}$-closed sets via $\left(r^{*} \mathrm{~g}^{*}\right) *$ open setsand investigate some of their basic properties in topological spaces

Keywords:(r*g*)*-closed sets, (r*g*)*-open sets.

1. Introduction

Levine introduced the class of g-closed sets. Many topologists have introduced several class of new sets and their properties. The authors [4] have already introduced ($\left.\mathrm{r}^{*} \mathrm{~g}^{*}\right)^{*}$-closed sets and investigated some of their properties. The aim of this paper is to introduce $\left(r^{*} g^{*}\right)^{* *}$-closed sets by generalizing closed sets via $\left(r^{*} g^{*}\right)^{*}$-open sets and investigate some properties.

2. Preliminaries

Definition2.1:A subset A of a space X is called

1. A α-generalized closed ($\alpha \mathrm{g}$ - closed) [5] set if $\alpha \operatorname{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever A $\subseteq \mathrm{U}$ and U is open.
2. A generalized semi closed (briefly gs - closed) [6] if $\operatorname{scl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open in X .
3. A g^{*} closed [2] ifcl $(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is g -open.
4. A $\mathrm{g} * * \mathrm{closed}[4]$ if $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is g^{*}-open.
5. A generalizedpre -closed (gp)- closed [1] if $\operatorname{pcl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open.
6. Ar*g*closed set [3] ifrcl $(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is g - open.

Definition 2.2:A subset A of a topological space (X, τ) is called a $\left(\mathrm{r}^{*} \mathrm{~g}^{*}\right)^{*}$ closed set if $c l(A) \subseteq U$ whenever $A \subseteq U$ and U is $\left(\mathrm{r}^{*} \mathrm{~g}^{*}\right)$-open.

3. $\left(\mathbf{r}^{*} \mathrm{~g}^{*}\right) * *-$ closed sets.

Definition 3.1: A subset Aof a topological spaces of (X, τ) is called a $\left(r^{*} g^{*}\right)^{* *}-$ closed set if $\operatorname{cl}(A) \subseteq A$ whenever $A \subseteq U$ and U is $\left(r^{*} g^{*}\right)^{*}$-open. The compliment of
$\left(r^{*} g^{*}\right)^{* *}$-closed is called as a $\left(r^{*} g^{*}\right)^{* *}$-open.
Proposition 3.2: Every closed set is $\left(r^{*} g^{*}\right)^{* *}$-closed set.
Proof:Let $A \subseteq U$, where U is $\left(r^{*} g^{*}\right)^{*}$-open.
Since A is closed, $\operatorname{cl}(A)=A$. Therefore $\operatorname{cl}(A)=A \subseteq U$.
$\Rightarrow c l(A) \subseteq U \Rightarrow A$ is $\left(r^{*} g^{*}\right)^{* *}$-closed set.
The converse need not be true as seen from the following example.
Example 3.3: Let $X=\{a, b, c\}, \tau=\{\varnothing, X,\{c\},\{a, c\}\}$
Closed sets are $\emptyset, X,\{a, b\},\{b\}$.
$\left(r^{*} g^{*}\right)^{* *}$-closed sets are $\emptyset, X,\{b\},\{a, b\},\{b, c\}$.
Here $\{b, c\}$ is $\left(r^{*} g^{*}\right)^{* *}$-closed but not closed.
Proposition 3.4: Every $\left(r^{*} g^{*}\right)^{* *}$-closed set is $g s$-closed set.
Proof:Let A be $\left(r^{*} g^{*}\right)^{* *}$-closed. Let $A \subseteq U$, where U is open. Every open set is $\left(r^{*} g^{*}\right)^{*}$-open. Therefore $A \subseteq U \Rightarrow \operatorname{cl}(A) \subseteq U$. But $\operatorname{scl}(A) \subseteq \operatorname{cl}(A) \subseteq U \Rightarrow$ $\operatorname{scl}(A) \subseteq U$ whenever $A \subseteq U, U$ is open. Hence A is $g s$-closed set.

The converse need not be true as seen from the following example.
Example 3.5: Let $X=\{a, b, c\}, \tau=\{\varnothing, X,\{a\},\{a, c\}\}$
$\left(r^{*} g^{*}\right)^{*}$-open sets are $\emptyset, X,\{a, c\},\{c\},\{a\}$.
$\left(r^{*} g^{*}\right)^{* *}$-closed sets are $\emptyset, X,\{b\},\{a, b\},\{b, c\}$.
$g s$-closed sets are $\emptyset, X,\{b\},\{c\},\{a, b\},\{b, c\}$.
Here $\{c\}$ is $g s$-closed but not $\left(r^{*} g^{*}\right)^{* *}$-closed.

Proposition 3.6: Every $\left(r^{*} g^{*}\right)^{* *}$-closed set is αg-closed set.
Proof:Let A be $\left(r^{*} g^{*}\right)^{* *}$-closed. Let $A \subseteq U$,where U is open.But every open set is $\left(r^{*} g^{*}\right)^{*}$-open. We have $c l(A) \subseteq U$. But $\alpha c l(A) \subseteq c l(A) \subseteq U \Rightarrow \alpha c l(A) \subseteq U$. $\Rightarrow \alpha c l(A) \subseteq U \Rightarrow A$ is αg-closed set.
The converse need not be true as seen from the following example.
Example 3.7: Let $X=\{a, b, c\}, \tau=\{\varnothing, X,\{a\}\}$
Closed sets are $\emptyset, X,\{b, c\}$
$\left(r^{*} g^{*}\right)^{*}$-closed sets are $\emptyset, X,\{b\},\{c\},\{a, b\},\{b, c\},\{a, c\}$
$\left(r^{*} g^{*}\right)^{*}$-open sets are $\emptyset, X,\{a, c\},\{a, b\},\{c\},\{a\},\{b\}$.
$\left(r^{*} g^{*}\right)^{* *}$-closed sets are $\emptyset, X,\{b, c\}$
α-closed sets are $\emptyset, X,\{b\},\{c\},\{b, c\}$.
αg-closed sets are $\emptyset, X,\{b\},\{c\},\{a, b\},\{b, c\},\{a, c\}$.
Here $\{b\},\{c\},\{a, b\},\{a, c\}$ is αg-closed but not $\left(r^{*} g^{*}\right)^{* *}$-closed.
Proposition 3.8: Every $\left(r^{*} g^{*}\right)^{* *}$-closed set is $g p$-closed set.
Proof:Proof follows from the fact that every open set is $\left(r^{*} g^{*}\right)^{*}$-open and $p c l(A) \subseteq c l(A) \subseteq U$.

The converse need not be true as seen from the following example.
Example 3.9: Let $X=\{a, b, c\}, \tau=\{\varnothing, X,\{c\},\{b, c\}\}$
Closed sets are $\emptyset, X,\{a\},\{a, b\}$
$\left(r^{*} g^{*}\right)^{*}$-open sets are $\emptyset, X,\{b\},\{c\},\{b, c\}$
$\left(r^{*} g^{*}\right)^{* *}$-closed sets are $\emptyset, X,\{a\},\{a, b\},\{a, c\}$.
$g p$-closed sets are $\emptyset, X,\{a\},\{b\},\{a, b\},\{a, c\}$.
Here $\{b\}$ is $g p$-closed but not $\left(r^{*} g^{*}\right)^{* *}$-closed.
Proposition 3.10: Every $\left(r^{*} g^{*}\right)^{* *}$-closed set is $g^{* *}$-closed set.
Proof:Let $A \subseteq U$, where U is g^{*}-open.
Since g^{*}-open implies $\left(r^{*} g^{*}\right)^{*}$-open. We have $c l(A) \subseteq U$.
Therefore A is $g^{* *}$ closed.

The converse need not be true as seen from the following example.
Example 3.11: Let $X=\{a, b, c\} ; \tau=\{\emptyset, X,\{a\}\}$
Closed sets of (X, τ) are $\emptyset, X,\{b, c\}$,
$g * *$-closed sets are $\emptyset, X,\{b\},\{c\},\{a, b\},\{b, c\},\{a, c\}$
$\left(r^{*} g^{*}\right)^{* *}$-closed sets are $\emptyset, X,\{b, c\}$,
$\{b\},\{c\},\{a, b\},\{a, c\}$ are $\mathrm{g}^{* *}$-closed sets but not $\left(r^{*} g^{*}\right)^{* *}$-closed sets.
Theorem 3.12:The union of two $\left(r^{*} g^{*}\right)^{* *}$-closed sets is $\left(r^{*} g^{*}\right)^{* *}$-closed.
Proof: Let A and B be $\left(r^{*} g^{*}\right)^{* *}$-closed sets.
To prove: $A U B$ is $\left(r^{*} g^{*}\right)^{* *}$ closed.
Suppose $A \cup B \subseteq U$, where U is a $\left(r^{*} g^{*}\right)^{*}$-open set.
Then $A \subseteq U$ and $B \subseteq U$.
$\Rightarrow c l(A) \subseteq U$ and $c l(B) \subseteq U . \Rightarrow c l(A \cup B)=c l(A) \cup c l(B) \subseteq U$.
$\Rightarrow A \cup B$ is $\left(r^{*} g^{*}\right)^{* *}$ closed.
Proposition 3.13:The intersection of two $\left(r^{*} g^{*}\right)^{* *}$ closed sets is a $\left(r^{*} g^{*}\right)^{* *}$ closed set.

Proof:Let A and B be two $\left(r^{*} g^{*}\right)^{* *}$-closed sets.
Let $A \cap B \subseteq U$, where U is a $\left(r^{*} g^{*}\right)^{*}$-open set.
Let $A \subseteq U_{1}$ and $B \subseteq U_{2}$ whenever U_{1} and U_{2} are $\left(r^{*} g^{*}\right)^{* *}$-open sets. Then
$\Rightarrow c l(A) \subseteq U_{1}$ and $c l(B) \subseteq U_{2}$
Now $c l(A \cap B)=c l(A) \cap c l(B) \subseteq U_{1} \cap U_{2}$ whenever $U_{1} \cap U_{2}$ is $\left(r^{*} g^{*}\right)^{*}$-open.
$\Rightarrow A \cap B$ is a $\left(r^{*} g^{*}\right)^{* *}$-closed set.
Example 3.14:Let $X=\{a, b, c, d\}, \tau=\{\varnothing, X,\{a\},\{b\},\{a, b\},\{a, b, c\}\}$
Closed sets are $\emptyset, X,\{b, c, d\},\{a, c, d\},\{c, d\},\{d\}$
$\left(r^{*} g^{*}\right)^{* *}$-closed sets are $\emptyset, X,\{d\},\{a, d\},\{b, d\},\{c, d\},\{a, b, d\},\{b, c, d\},\{a, c, d\}$ Here $\{a, c, d\} \cap\{a, b, d\}=\{$ a $\}$ which is $\left(r^{*} g^{*}\right)^{* *}$-closed

Proposition 3.15: If A is both $\left(r^{*} g^{*}\right)^{*}$ open and $\left(r^{*} g^{*}\right)^{* *}$-closed, then A is closed.

Proof: Let A be $\left(r^{*} g^{*}\right)^{*}$-open set in X and also $\left(r^{*} g^{*}\right)^{* *}$-closed set in X
Since A is $\left(r^{*} g^{*}\right)^{*}$-open, take $U=A \Rightarrow c l(A) \subseteq U=A \Rightarrow c l(A) \subseteq A$
But $A \subseteq \operatorname{cl}(A) \Rightarrow C l(A)=A$. Hence A is closed.
Proposition 3.16:If A is $\left(r^{*} g^{*}\right)^{* *}$ closed set of (X, τ), such that $\mathrm{A} \subseteq B \subseteq$ $c l(A)$, then B is also a $\left(r^{*} g^{*}\right)^{* *}$-closed set of (X, τ).
Proof: Let $B \subseteq U$ and U is $\left(r^{*} g^{*}\right)^{*}$-open set. Since $A \subset B \subset c l(A)$,
we have $A \subset B \subset U$ and since A is $\left(r^{*} g^{*}\right)^{* *}$-closed, $c l(A) \subseteq U$. But $B \subset c l(A) \Rightarrow c l(B) \subset c l(A) \subset U$
$\Rightarrow c l(B) \subseteq U$ whenever $B \subset U$ and U is $\left(r^{*} g^{*}\right)^{* *}$ open..
$\Rightarrow B$ is $\left(r^{*} g^{*}\right)^{* *}$-closed

4. $\left(\mathrm{r}^{*} \mathrm{~g}^{*}\right)^{* *}$ continuous maps

Definition 4.1:A map $f:(X, \tau) \rightarrow(Y, \sigma)$ is called a $\left(\mathrm{r}^{*} \mathrm{~g}^{*}\right)^{* *}$-continuous if $f^{-1}(V)$ is $\mathrm{a}\left(\mathrm{r}^{*} \mathrm{~g}^{*}\right)^{* *}$-closed set of (X, τ) for every closed set V of (Y, σ).
Proposition 4.2: Every continuous map is $\left(r^{*} g^{*}\right)^{* *}$-continuous but the converse need not be true.

Example 4.3: Let $X=\{a, b, c\}, \tau=\{\emptyset, X,\{c\},\{a, c\}\}$.
Closed sets are $\emptyset, X,\{a, b\},\{b\}$
$\left(r^{*} g^{*}\right)^{* *}$-closed sets are $\emptyset, X,\{b\},\{a, b\},\{b, c\}$
Let $\sigma=\{\varnothing, Y,\{c\}\}$. Closed sets are $\emptyset, Y,\{a, b\}$,
Define a function $f:(X, \tau) \rightarrow(Y, \sigma)$ by $f(a)=c ; f(b)=a ; f(c)=b$.
$f^{-1}(\{a, b\})=\{b, c\}$ is $\left(\mathrm{r}^{*} \mathrm{~g}^{*}\right)^{* *}$ closed but not closed in (X, τ). Hence f is $\left(\mathrm{r}^{*} \mathrm{~g}^{*}\right)^{* *}$-continuous but not continuous.
Proposition 4.4:Every $\left(r^{*} g^{*}\right)^{* *}$-continuous map is $g s$-continuous function but the converse need not be true.

Example 4.5: Let $X=Y=\{a, b, c\} \tau=\{\varnothing, X,\{c\},\{a, c\}\} \sigma=\{\varnothing, Y,\{b, c\}\}$
σ Closed sets are $\varnothing, Y,\{a\}$
$\left(r^{*} g^{*}\right)^{* *}$-closed sets are $\emptyset, X,\{b\},\{a, b\},\{b, c\}$
$g s$-closed sets are $\emptyset, X,\{b\},\{c\},\{a, b\},\{b, c\}$
Define a function $f: X \rightarrow Y$ by $f(a)=b ; f(b)=c ; f(c)=a$
$f^{-1}(\{a\})=\{c\}$ is gs closedin (X, τ).
Which implies that f is $g s$-continuous but $\{c\}$ is not $\left(r^{*} g^{*}\right)^{* *}$-closed in (X, τ). Therefore f is not $\left(r^{*} g^{*}\right)^{* *}$-continuous.
Proposition 4.6:Every $\left(r^{*} g^{*}\right)^{* *}$-continuous map is αg-continuous map but the converse need not be true.
Example 4.7: Let $X=Y=\{a, b, c\} \tau=\{\emptyset, X,\{a\}\} ; C=\{\varnothing, Y,\{a, c\}\} ;$
$\sigma=\{\varnothing, Y,\{a, c\}\}$.
σ Closed sets are $\emptyset, Y,\{b\} .\left(r^{*} g^{*}\right)^{* *}$-closed sets are $\emptyset, X,\{b\},\{a, b\},\{b, c\}$
αg-closed sets are $\emptyset, X,\{b\},\{c\},\{a, b\},\{b, c\}$
Define a function $f: X \rightarrow Y$ by $f(a)=a ; f(b)=c ; f(c)=b$
$f^{-1}(\{b\})=\{c\}, \alpha g$-closed in (X, τ).
Which implies that f is αg-continuous but $\{c\}$ is not $\left(r^{*} g^{*}\right)^{* *}$-closed in (X, τ). Therefore f is not $\left(r^{*} g^{*}\right)^{* *}$-continuous.

Proposition 4.8:Every $\left(r^{*} g^{*}\right)^{* *}$-continuous map is $g p$-continuous map but the converse need not be true.

Example 4.9: Let $X=Y=\{a, b, c\}$
$\tau=\{\varnothing, X,\{c\},\{b, c\}\} ; \sigma=\{\varnothing, Y,\{a, c\}\}$.
Define a function $f: X \rightarrow Y$ by $f(a)=a ; f(b)=c ; f(c)=b$
$f^{-1}(\{c\})=\{b\}, g p$-closed in (X, τ).
Which implies that f is $g p$-continuous but $\{b\}$ is not $\left(r^{*} g^{*}\right)^{* *}$-closed in (X, τ).
Therefore f is not $\left(r^{*} g^{*}\right)^{* *}$-continuous.
Theorem 4.10:Composition of two $\left(r^{*} g^{*}\right)^{* *}$-continuous maps need not be $\left(r^{*} g^{*}\right)^{* *}$-continuous.
Example 4.11:Let $X=\{a, b, c\} ; \tau=\{\varnothing, X,\{b\},\{a, b\},\{b, c\}\}$
Closed sets are $\varnothing, X,\{a, c\},\{c\},\{a\}$
$\left(r^{*} g^{*}\right)^{*}$-open sets are $\emptyset, X,\{b, c\},\{a, b\},\{b\},\{c\},\{a\}$
$\left(r^{*} g^{*}\right)^{* *}$-closed sets are $\emptyset, X,\{a\},\{c\},\{a, c\}$
Let $Y=\{a, b, c\} ; \sigma=\{\varnothing, Y,\{c\},\{b, c\}\}$
Closed sets are $\varnothing, Y,\{a, b\},\{a\}$
$\left(r^{*} g^{*}\right)^{*}$-open sets are $\emptyset, Y,\{b, c\},\{c\},\{b\}$
$\left(r^{*} g^{*}\right)^{* *}$-closed sets are $\emptyset, Y,\{a\},\{a, b\},\{a, c\}$
Define $f:(X, \tau) \rightarrow(Y, \sigma)$ is defined by $f(a)=a ; f(c)=b ; f(b)=c$
Now $f^{-1}(\{a, b\})=\{a, c\}$ and $f^{-1}(\{a\})=\{a\}$, which are $\left(r^{*} g^{*}\right)^{* *}$-closed in (X, τ). Therefore f is $\left(r^{*} g^{*}\right)^{* *}$ is continuous.
Let $g:(Y, \tau) \rightarrow(Z, \eta)$ where $Z=\{a, b, c\} ; \eta=\{\varnothing, X,\{c\}\}$
Closed sets are $\emptyset, Z,\{a, b\}$.
Let $g(a)=a ; g(b)=c ; g(c)=b$
$g^{-1}(\{a, b\})=\{a, c\}$, which is $\left(r^{*} g^{*}\right)^{* *}$-closed in $Y \Rightarrow \mathrm{~g}$ is $\left(r^{*} g^{*}\right)^{* *}$ is continuous.

$$
\text { But } \begin{aligned}
&(g \circ f)^{-1}(\{a, b\})=f^{-1}\left(g^{-1}\{a, b\}\right) \\
&=f^{-1}\{(a, c)\} \\
&=\{a, b\}
\end{aligned}
$$

Which is not $\left(r^{*} g^{*}\right)^{* *}$-closed set in (X, τ) which implies that the composition of two $\left(r^{*} g^{*}\right)^{* *}$-continuous maps is not $\left(r^{*} g^{*}\right)^{* *}$-closed.
Definition 4. 12: A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called a $\left(\mathbf{r}^{*} \mathbf{g}^{*}\right) * *$. irresolutemap if $f^{-1}(V)$ is $\mathrm{a}\left(\mathrm{r}^{*} \mathrm{~g}^{*}\right)^{* *}$-closed set of (X, τ) for every $\left(\mathrm{r}^{*} \mathrm{~g}^{*}\right)^{* *}$ closed set V of (Y, σ).
Example 4.13: Let $X=Y=\{a, b, c\}$

$$
\tau=\{\emptyset, X,\{b\},\{a, b\},\{b, c\}\}
$$

$\left(r^{*} g^{*}\right)^{* *}$-closed sets $X, \emptyset,\{a\},\{c\},\{a, c\}$

$$
\sigma=\{\varnothing, Y,\{a\}\}
$$

$\left(r^{*} g^{*}\right)^{* *}$-closed sets are $\emptyset, Y,\{b, c\}$

Define $f(a)=b, f(c)=c, f(b)=a$

$$
f^{-1}(\{b, c\})=\{a, c\}
$$

$\{a, c\}$ is $\left(r^{*} g^{*}\right)^{* *}$-closed sets in (X, τ)
Therefore f is a $\left(r^{*} g^{*}\right)^{* *}$-irresoute mapping.
The following theorem gives some properties of $\left(r^{*} g^{*}\right)^{* *}$-irresolute map.

Theorem 4.14:

1. Every $\left(r^{*} g^{*}\right)^{* *}$-irresolute map is $\left(r^{*} g^{*}\right)^{* *}$-continuous.
2. Every $\left(r^{*} g^{*}\right)^{* *}$-irresolute map is $g s$-continuous.
3. Every $\left(r^{*} g^{*}\right)^{* *}$-irresolute map is αg-continuous.
4. Every $\left(r^{*} g^{*}\right)^{* *}$-irresolute map is $g p$-continuous.
5. Every $\left(r^{*} g^{*}\right)^{* *}$-irresolute map is $g^{* *}$-continuous.

Example 4.15: The converse of the above theorems need not be true.

1. Let $X=\{a, b, c\} ; \tau=\{X, \emptyset,\{b\},\{a, b\},\{b, c\}\}$

Closed sets are $X, \emptyset,\{a, c\},\{c\},\{a\}$
$\left(r^{*} g^{*}\right)^{* *}$-closed $\emptyset, X,\{a\},\{c\},\{a, c\}$

$$
Y=\{a, b, c\} ; \sigma=\{Y, \emptyset,\{c\},\{a, c\}\}
$$

Closed sets are $Y, \emptyset,\{b\},\{a, b\}$
$\left(r^{*} g^{*}\right)^{* *}$-closed $\emptyset, Y,\{b\},\{a, b\},\{b, c\}$
Define $f:(X, \tau) \rightarrow(Y, \sigma)$ by $f(a)=a, f(b)=c, f(c)=b$
$f^{-1}(\{a, b\})=\{a, c\}, f^{-1}(\{b\})=\{c\}$ are $\left(r^{*} g^{*}\right)^{* *}$-closed.
Therefore f is $\left(r^{*} g^{*}\right)^{* *}$-continuous.
Now $f^{-1}(\{b, c\})=\{b, c\}$ which is not $\left(r^{*} g^{*}\right)^{* *}$-closed.
Which implies that f is not $\left(r^{*} g^{*}\right)^{* *}$-irresolute.
Here f is $\left(r^{*} g^{*}\right)^{* *}$-continuous but not irresolute.
2. Let $X=\{a, b, c\} ; \tau=\{\emptyset, X,\{c\},\{a, c\}\}$

$$
Y=\{a, b, c\} ; \sigma=\{\emptyset, Y,\{a, c\}\}
$$

Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $f(a)=a ; f(b)=a ; f(c)=b$

Here f is $g s$-continuous but not $\left(r^{*} g^{*}\right)^{* *}$-irresolute.
3. Let $X=\{a, b, c\} ; \tau=\{\varnothing, X,\{a\}\}$

$$
Y=\{a, b, c\} ; \sigma=\{\emptyset, Y,\{a, b\},\{b\}\}
$$

Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $f(a)=a ; f(b)=c ; f(c)=b$
Here f is αg-continuous but not $\left(r^{*} g^{*}\right)^{* *}$-irresolute.
4. Let $X=\{a, b, c\} ; \tau=\{\varnothing, X,\{c\},\{b, c\}\}$

$$
Y=\{a, b, c\} ; \sigma=\{\varnothing, Y,\{a, b\}\}
$$

Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $f(a)=b ; f(b)=c ; f(c)=a$ Here f is $g p$-continuous but not $\left(r^{*} g^{*}\right)^{* *}$-irresolute.
5. Let $X=\{a, b, c\} ; \tau=\{\varnothing, X,\{c\},\{b, c\}\}$

$$
Y=\{a, b, c\} ; \sigma=\{\varnothing, Y,\{a, b\}\}
$$

Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be defined by $f(a)=b ; f(b)=c ; f(c)=a$ Here f is $g^{* *}$-continuous but not $\left(r^{*} g^{*}\right)^{* *}$-irresolute.
Remark 4.16: $\left(r^{*} g^{*}\right)^{* *}$-irresoluteness is independent of $g s$-irresoluteness, αg irresoluteness, $g p$-irresoluteness and $g^{* *}$-irresoluteness.

Proposition 4.17: Composition of $\left(r^{*} g^{*}\right)^{* *}$-irresolute maps is again an $\left(r^{*} g^{*}\right)^{* *}$-irresolute map.

References

[1] Arya S.P and Nour T.M, characterizations of S normal spaces, Indian J.Pure app.Math,21(1990)
[2] Devi.R, Maki H and Balachandran K, Generalized α-closed maps and α generalized closed maps, Indian.J.Pure.Appl.Math, 29(1)(1998),37-49.
[3] MakiH, Umehara J and Noiri T , Every topological space is pre- $\mathrm{T}_{1 / 2}$ Mem.Fac.Sci.kochi univ.ser.a, math.,17(1996),33-42
[4]Meenakumari .N and Indira T, on (r*g*)* closed sets in Topological spaces, IJSR, volume 4, Issue 12, December 2015. ISSN (on Line), 2319 - 7064, Impact fac 5.611.
[5] Meenakumari. N and Indira $\mathrm{T},\left(\mathrm{r}^{*} \mathrm{~g}^{*}\right)^{*}$ continuous maps in Topological spaces IJDR, vol- 6, Issue - 04, PP7402-7408, April - 2016.Imp.Fac: 4.25
[6] Meenakumari.N and Indira T , r*g* closed sets in topological spaces , Annals of Pure and Applied Mathematics vol.6, No. 2,2014,125-132
[7] Pauline Mary Helen.M,Veronica Vijayan,Ponnuthai Selvarani, g** $^{* *}$ closed sets in Topological Spaces,IJMA 3(5),(2012),1-15.
[8] Veerakumar M.K.R.S, Between closed sets and g closed sets,Mem.Fac.Sci.Koch Univ.Ser.A. Math., 21 (2000) 1-19.

