$(r^*g^*)^{**}$ -closed sets in topological spaces N. Meenakumari &T.Indira

Associate professor, PG & Research Department of Mathematics, SeethalakshmiRamaswami College, Trichy.

Email. Id: meenamega 25@gmail.com

Abstract: The aim of this paper is to introduce a new class of closed sets namely (r*g*)**-closed sets which is obtained by generalizing (r*g*)*-closed sets via (r*g*)*open setsand investigate some of their basic properties in topological spaces

Keywords: $(r^*g^*)^*$ -closed sets, $(r^*g^*)^*$ -open sets.

1. Introduction

Levine introduced the class of g-closed sets. Many topologists have introduced several class of new sets and their properties. The authors [4] have already introduced $(r^*g^*)^*$ -closed sets and investigated some of their properties. The aim of this paper is to introduce $(r^*g^*)^*$ -closed sets by generalizing closed sets via $(r^*g^*)^*$ -open sets and investigate some properties.

2. Preliminaries

Definition2.1: A subset A of a space X is called

- A α-generalized closed (α g- closed) [5] set if α cl(A) ⊆ U whenever A
 ⊆ U and U is open.
- A generalized semi closed (briefly gs closed) [6] if scl(A)⊆ U whenever A⊆ U and U is open in X.
- 3. A g* closed [2] ifcl(A) \subseteq U whenever A \subseteq U and U is g-open.
- 4. A $g^**closed[4]$ if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g^*-open .
- 5. A generalized pre -closed (gp)- closed [1] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.
- 6. A r*g*closed set [3] ifrcl(A) \subseteq U whenever A \subseteq U and U is g- open.

Definition 2.2:A subset A of a topological space (X, τ) is called a (r*g*)*-closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is (r*g*)-open.

3. (r*g*)**-closed sets.

Definition 3.1: A subset A of a topological spaces of (X, τ) is called a $(r^*g^*)^{**}$ -closed set if $cl(A) \subseteq A$ whenever $A \subseteq U$ and U is $(r^*g^*)^*$ -open. The compliment of

 $(r^*g^*)^{**}$ -closed is called as a $(r^*g^*)^{**}$ -open.

Proposition 3.2: Every closed set is $(r^*g^*)^{**}$ -closed set.

Proof:Let $A \subseteq U$, where U is $(r^*g^*)^*$ -open.

Since A is closed, cl(A) = A. Therefore $cl(A) = A \subseteq U$.

 $\Rightarrow cl(A) \subseteq U \Rightarrow A \text{ is}(r^*g^*)^{**}\text{-closed set.}$

The converse need not be true as seen from the following example.

Example 3.3: Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{c\}, \{a, c\}\}$

Closed sets are \emptyset , X, $\{a, b\}$, $\{b\}$.

 $(r^*g^*)^{**}$ -closed sets are $\emptyset, X, \{b\}, \{a, b\}, \{b, c\}.$

Here $\{b, c\}$ is $(r^*g^*)^{**}$ -closed but not closed.

Proposition 3.4: Every $(r^*g^*)^{**}$ -closed set is gs-closed set.

Proof:Let A be $(r^*g^*)^{**}$ -closed. Let $A \subseteq U$, where U is open. Every open set is $(r^*g^*)^*$ -open. Therefore $A \subseteq U \Rightarrow cl(A) \subseteq U$. But $scl(A) \subseteq cl(A) \subseteq U \Rightarrow scl(A) \subseteq U$ whenever $A \subseteq U$, U is open. Hence A is gs-closed set.

The converse need not be true as seen from the following example.

Example 3.5: Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, c\}\}$

 $(r^*g^*)^*$ -open sets are $\emptyset, X, \{a, c\}, \{c\}, \{a\}.$

 $(r^*g^*)^{**}$ -closed sets are \emptyset , X, $\{b\}$, $\{a, b\}$, $\{b, c\}$.

gs-closed sets are \emptyset , X, $\{b\}$, $\{c\}$, $\{a,b\}$, $\{b,c\}$.

Here $\{c\}$ is gs-closed but not $(r^*g^*)^{**}$ -closed.

Proposition 3.6: Every $(r^*g^*)^{**}$ -closed set is αg -closed set.

Proof:Let A be $(r^*g^*)^{**}$ -closed. Let $A \subseteq U$, where U is open. But every open set is $(r^*g^*)^*$ -open. We have $cl(A) \subseteq U$. But $\alpha cl(A) \subseteq cl(A) \subseteq U \Rightarrow \alpha cl(A) \subseteq U$. $\Rightarrow \alpha cl(A) \subseteq U \Rightarrow A$ is αg -closed set.

The converse need not be true as seen from the following example.

Example 3.7: Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}$

Closed sets are \emptyset , X, $\{b, c\}$

 $(r^*g^*)^*$ -closed sets are $\emptyset, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}$

 $(r^*g^*)^*$ -open sets are \emptyset , X, $\{a, c\}$, $\{a, b\}$, $\{c\}$, $\{a\}$, $\{b\}$.

 $(r^*g^*)^{**}$ -closed sets are \emptyset , X, $\{b,c\}$

 α -closed sets are \emptyset , X, $\{b\}$, $\{c\}$, $\{b, c\}$.

 αg -closed sets are $\emptyset, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}.$

Here $\{b\}$, $\{c\}$, $\{a,b\}$, $\{a,c\}$ is αg -closed but not $(r^*g^*)^{**}$ -closed.

Proposition 3.8: Every $(r^*g^*)^{**}$ -closed set is gp-closed set.

Proof:Proof follows from the fact that every open set is $(r^*g^*)^*$ -open and $pcl(A) \subseteq cl(A) \subseteq U$.

The converse need not be true as seen from the following example.

Example 3.9: Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{c\}, \{b, c\}\}$

Closed sets are \emptyset , X, $\{a\}$, $\{a,b\}$

 $(r^*g^*)^*$ -open sets are $\emptyset, X, \{b\}, \{c\}, \{b, c\}$

 $(r^*g^*)^{**}$ -closed sets are \emptyset , X, $\{a\}$, $\{a,b\}$, $\{a,c\}$.

gp-closed sets are \emptyset , X, $\{a\}$, $\{b\}$, $\{a, b\}$, $\{a, c\}$.

Here $\{b\}$ is gp-closed but not $(r^*g^*)^{**}$ -closed.

Proposition 3.10: Every $(r^*g^*)^{**}$ -closed set is g^{**} -closed set.

Proof:Let $A \subseteq U$, where U is g^* -open.

Since g^* -open implies $(r^*g^*)^*$ -open. We have $cl(A) \subseteq U$.

Therefore *A* is g^{**} closed.

The converse need not be true as seen from the following example.

Example 3.11: Let $X = \{a, b, c\}; \ \tau = \{\emptyset, X, \{a\}\}$

Closed sets of (X, τ) are $\emptyset, X, \{b, c\}$,

 $g **-closed sets are \emptyset, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}$

 $(r^*g^*)^{**}$ -closed sets are \emptyset , X, $\{b, c\}$,

 $\{b\}, \{c\}, \{a, b\}, \{a, c\}$ are g^{**} -closed sets but not $(r^*g^*)^{**}$ -closed sets.

Theorem 3.12:The union of two $(r^*g^*)^{**}$ -closed sets is $(r^*g^*)^{**}$ -closed.

Proof: Let A and B be $(r^*g^*)^{**}$ -closed sets.

To prove: AUB is $(r^*g^*)^{**}$ closed.

Suppose $A \cup B \subseteq U$, where U is $a(r^*g^*)^*$ -open set.

Then $A \subseteq U$ and $B \subseteq U$.

 $\Rightarrow cl(A) \subseteq U$ and $cl(B) \subseteq U \Rightarrow cl(A \cup B) = cl(A) \cup cl(B) \subseteq U$.

 $\Rightarrow A \cup B$ is $(r^*g^*)^{**}$ closed.

Proposition 3.13:The intersection of two $(r^*g^*)^{**}$ closed sets is a $(r^*g^*)^{**}$ closed set.

Proof:Let A and B be two $(r^*g^*)^{**}$ -closed sets.

Let $A \cap B \subseteq U$, where *U* is a $(r^*g^*)^*$ -open set.

Let $A \subseteq U_1$ and $B \subseteq U_2$ whenever U_1 and U_2 are $(r^*g^*)^{**}$ -open sets. Then

 $\Rightarrow cl(A) \subseteq U_1$ and $cl(B) \subseteq U_2$

Now $cl(A \cap B) = cl(A) \cap cl(B) \subseteq U_1 \cap U_2$ whenever $U_1 \cap U_2$ is $(r^*g^*)^*$ -open.

 $\Rightarrow A \cap B$ is a $(r^*g^*)^{**}$ -closed set.

Example 3.14:Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$

Closed sets are \emptyset , X, $\{b, c, d\}$, $\{a, c, d\}$, $\{c, d\}$, $\{d\}$

 $(r^*g^*)^{**}$ -closed sets are \emptyset , X, $\{d\}$, $\{a,d\}$, $\{b,d\}$, $\{c,d\}$, $\{a,b,d\}$, $\{b,c,d\}$, $\{a,c,d\}$

Here $\{a, c, d\} \cap \{a, b, d\} = \{a\}$ which is $(r^*g^*)^{**}$ -closed

Proposition 3.15: If A is both $(r^*g^*)^*$ open and $(r^*g^*)^{**}$ -closed, then A is closed.

Proof: Let A be $(r^*g^*)^*$ -open set in X and also $(r^*g^*)^{**}$ -closed set in X

Since A is $(r^*g^*)^*$ -open, take $U = A \Rightarrow cl(A) \subseteq U = A \Rightarrow cl(A) \subseteq A$

But $A \subseteq cl(A) \Rightarrow Cl(A) = A$. Hence A is closed.

Proposition 3.16:If A is $(r^*g^*)^{**}$ closed set of (X,τ) , such that $A \subseteq B \subseteq cl(A)$, then B is also a $(r^*g^*)^{**}$ -closed set of (X,τ) .

Proof: Let $B \subseteq U$ and U is $(r^*g^*)^*$ -open set. Since $A \subseteq B \subseteq cl(A)$,

we have $A \subseteq B \subseteq U$ and since A is $(r^*g^*)^{**}$ -closed, $cl(A) \subseteq U$. But $B \subseteq cl(A) \Rightarrow cl(B) \subseteq cl(A) \subseteq U$

 $\Rightarrow cl(B) \subseteq U$ whenever $B \subset U$ and U is $(r^*g^*)^{**}$ open..

 \Rightarrow B is $(r^*g^*)^{**}$ -closed

4. (r*g*)** continuous maps

Definition 4.1:A map $f:(X,\tau) \to (Y,\sigma)$ is called a $(r^*g^*)^{**}$ -continuous if $f^{-1}(V)$ is $a(r^*g^*)^{**}$ -closed set of (X,τ) for every closed set V of (Y,σ) .

Proposition 4.2: Every continuous map is $(r^*g^*)^{**}$ -continuous but the converse need not be true.

Example 4.3: Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{c\}, \{a, c\}\}.$

Closed sets are \emptyset , X, $\{a, b\}$, $\{b\}$

 $(r^*g^*)^{**}$ -closed sets are $\emptyset, X, \{b\}, \{a, b\}, \{b, c\}$

Let $\sigma = \{\emptyset, Y, \{c\}\}\$. Closed sets are $\emptyset, Y, \{a, b\}$,

Define a function $f:(X,\tau)\to (Y,\sigma)$ by f(a)=c; f(b)=a; f(c)=b.

 $f^{-1}(\{a,b\}) = \{b,c\}$ is (r*g*)** closed but not closed in (X, τ) . Hence f is (r*g*)** -continuous but not continuous.

Proposition 4.4:Every $(r^*g^*)^{**}$ -continuous map is gs-continuous function but the converse need not be true.

Example 4.5: Let $X = Y = \{a, b, c\}\tau = \{\emptyset, X, \{c\}, \{a, c\}\}\ \sigma = \{\emptyset, Y, \{b, c\}\}\$

 σ Closed sets are \emptyset , Y, $\{a\}$

 $(r^*g^*)^{**}$ -closed sets are $\emptyset, X, \{b\}, \{a, b\}, \{b, c\}$

gs-closed sets are \emptyset , X, $\{b\}$, $\{c\}$, $\{a, b\}$, $\{b, c\}$

Define a function $f: X \to Y$ by f(a) = b; f(b) = c; f(c) = a

 $f^{-1}(\lbrace a \rbrace) = \lbrace c \rbrace$ is gs closedin (X, τ) .

Which implies that f is gs-continuous but $\{c\}$ is not $(r^*g^*)^{**}$ -closed in (X, τ) . Therefore f is not $(r^*g^*)^{**}$ -continuous.

Proposition 4.6:Every $(r^*g^*)^{**}$ -continuous map is αg -continuous map but the converse need not be true.

Example 4.7: Let $X = Y = \{a, b, c\}\tau = \{\emptyset, X, \{a\}\}; C = \{\emptyset, Y, \{a, c\}\};$

 $\sigma = \{\emptyset, Y, \{a, c\}\}.$

 σ Closed sets are \emptyset , Y, $\{b\}$. $(r^*g^*)^{**}$ -closed sets are \emptyset , X, $\{b\}$, $\{a,b\}$, $\{b,c\}$

 αg -closed sets are \emptyset , X, $\{b\}$, $\{c\}$, $\{a,b\}$, $\{b,c\}$

Define a function $f: X \to Y$ by f(a) = a; f(b) = c; f(c) = b

 $f^{-1}(\{b\}) = \{c\}, \alpha g$ -closed in (X, τ) .

Which implies that f is αg -continuous but $\{c\}$ is not $(r^*g^*)^{**}$ -closed in (X,τ) .

Therefore f is not $(r^*g^*)^{**}$ -continuous.

Proposition 4.8:Every $(r^*g^*)^{**}$ -continuous map is gp-continuous map but the converse need not be true.

Example 4.9: Let $X = Y = \{a, b, c\}$

$$\tau = \{\emptyset, X, \{c\}, \{b, c\}\}; \ \sigma = \{\emptyset, Y, \{a, c\}\}.$$

Define a function $f: X \to Y$ by f(a) = a; f(b) = c; f(c) = b

$$f^{-1}(\{c\}) = \{b\}, gp\text{-closed in } (X, \tau).$$

Which implies that f is gp-continuous but $\{b\}$ is not $(r^*g^*)^{**}$ -closed in (X, τ) .

Therefore f is not $(r^*g^*)^{**}$ -continuous.

Theorem 4.10:Composition of two $(r^*g^*)^{**}$ -continuous maps need not be $(r^*g^*)^{**}$ -continuous.

Example 4.11:Let $X = \{a, b, c\}; \ \tau = \{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}\}$

Closed sets are \emptyset , X, $\{a, c\}$, $\{c\}$, $\{a\}$

 $(r^*g^*)^*$ -open sets are $\emptyset, X, \{b, c\}, \{a, b\}, \{b\}, \{c\}, \{a\}$

 $(r^*g^*)^{**}$ -closed sets are $\emptyset, X, \{a\}, \{c\}, \{a, c\}$

Let
$$Y = \{a, b, c\}; \ \sigma = \{\emptyset, Y, \{c\}, \{b, c\}\}\$$

Closed sets are \emptyset , Y, $\{a, b\}$, $\{a\}$

 $(r^*g^*)^*$ -open sets are $\emptyset, Y, \{b, c\}, \{c\}, \{b\}$

 $(r^*g^*)^{**}$ -closed sets are \emptyset , Y, $\{a\}$, $\{a, b\}$, $\{a, c\}$

Define $f:(X,\tau)\to (Y,\sigma)$ is defined by f(a)=a; f(c)=b; f(b)=c

Now $f^{-1}(\{a,b\}) = \{a,c\}$ and $f^{-1}(\{a\}) = \{a\}$, which are $(r^*g^*)^{**}$ -closed in (X,τ) . Therefore f is $(r^*g^*)^{**}$ is continuous.

Let $g: (Y, \tau) \to (Z, \eta)$ where $Z = \{a, b, c\}; \eta = \{\emptyset, X, \{c\}\}$

Closed sets are \emptyset , Z, $\{a, b\}$.

Let g(a) = a; g(b) = c; g(c) = b

 $g^{-1}(\{a,b\}) = \{a,c\}$, which is $(r^*g^*)^{**}$ -closed in $Y \Rightarrow g$ is $(r^*g^*)^{**}$ is continuous.

But
$$(g \circ f)^{-1}(\{a,b\}) = f^{-1}(g^{-1}\{a,b\})$$

= $f^{-1}\{(a,c)\}$
= $\{a,b\}$

Which is not $(r^*g^*)^{**}$ -closed set in (X,τ) which implies that the composition of two $(r^*g^*)^{**}$ -continuous maps is not $(r^*g^*)^{**}$ -closed.

Definition 4. 12:A function $f:(X,\tau) \to (Y,\sigma)$ is called a $(\mathbf{r}^*\mathbf{g}^*)^{**}$ -**irresolute**map if $f^{-1}(V)$ is $a(\mathbf{r}^*\mathbf{g}^*)^{**}$ -closed set of (X,τ) for every $(\mathbf{r}^*\mathbf{g}^*)^{**}$ closed set V of (Y,σ) .

Example 4.13: Let $X = Y = \{a, b, c\}$

$$\tau = \{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}\}\$$

 $(r^*g^*)^{**}$ -closed sets $X, \emptyset, \{a\}, \{c\}, \{a, c\}$

$$\sigma = \{\emptyset, Y, \{a\}\}\$$

 $(r^*g^*)^{**}$ -closed sets are \emptyset , Y, $\{b, c\}$

Define
$$f(a) = b$$
, $f(c) = c$, $f(b) = a$

$$f^{-1}(\{b,c\}) = \{a,c\}$$

$$\{a,c\}$$
 is $(r^*g^*)^{**}$ -closed sets in (X,τ)

Therefore f is a $(r^*g^*)^{**}$ -irresoute mapping.

The following theorem gives some properties of $(r^*g^*)^{**}$ -irresolute map.

Theorem 4.14:

- 1. Every $(r^*g^*)^{**}$ -irresolute map is $(r^*g^*)^{**}$ -continuous.
- 2. Every $(r^*g^*)^{**}$ -irresolute map is gs-continuous.
- 3. Every $(r^*g^*)^{**}$ -irresolute map is αg -continuous.
- 4. Every $(r^*g^*)^{**}$ -irresolute map is gp-continuous.
- 5. Every $(r^*g^*)^{**}$ -irresolute map is g^{**} -continuous.

Example 4.15: The converse of the above theorems need not be true.

1. Let
$$X = \{a, b, c\}; \ \tau = \{X, \emptyset, \{b\}, \{a, b\}, \{b, c\}\}$$

Closed sets are X, \emptyset , $\{a, c\}$, $\{c\}$, $\{a\}$

$$(r^*g^*)^{**}$$
-closed $\emptyset, X, \{a\}, \{c\}, \{a, c\}$

$$Y = \{a, b, c\}; \ \sigma = \{Y, \emptyset, \{c\}, \{a, c\}\}\$$

Closed sets are Y, \emptyset , $\{b\}$, $\{a, b\}$

$$(r^*g^*)^{**}$$
-closed $\emptyset, Y, \{b\}, \{a, b\}, \{b, c\}$

Define
$$f: (X, \tau) \to (Y, \sigma)$$
 by $f(a) = a, f(b) = c, f(c) = b$

$$f^{-1}(\{a,b\}) = \{a,c\}, f^{-1}(\{b\}) = \{c\} \text{ are } (r^*g^*)^{**}\text{-closed.}$$

Therefore f is $(r^*g^*)^{**}$ -continuous.

Now
$$f^{-1}(\{b,c\}) = \{b,c\}$$
 which is not $(r^*g^*)^{**}$ -closed.

Which implies that f is not $(r^*g^*)^{**}$ -irresolute.

Here f is $(r^*g^*)^{**}$ -continuous but not irresolute.

2. Let
$$X = \{a, b, c\}; \tau = \{\emptyset, X, \{c\}, \{a, c\}\}$$

$$Y = \{a, b, c\}; \ \sigma = \{\emptyset, Y, \{a, c\}\}\$$

Let
$$f:(X,\tau)\to (Y,\sigma)$$
 be defined by $f(a)=a$; $f(b)=a$; $f(c)=b$

Here f is gs-continuous but not $(r^*g^*)^{**}$ -irresolute.

3. Let $X = \{a, b, c\}; \tau = \{\emptyset, X, \{a\}\}$

$$Y = \{a, b, c\}; \ \sigma = \{\emptyset, Y, \{a, b\}, \{b\}\}\$$

Let $f:(X,\tau) \to (Y,\sigma)$ be defined by f(a)=a; f(b)=c; f(c)=bHere f is αg -continuous but not $(r^*g^*)^{**}$ -irresolute.

4. Let $X = \{a, b, c\}; \tau = \{\emptyset, X, \{c\}, \{b, c\}\}$

$$Y = \{a, b, c\}; \ \sigma = \{\emptyset, Y, \{a, b\}\}\$$

Let $f: (X, \tau) \to (Y, \sigma)$ be defined by f(a) = b; f(b) = c; f(c) = aHere f is gp-continuous but not $(r^*g^*)^{**}$ -irresolute.

5. Let $X = \{a, b, c\}; \tau = \{\emptyset, X, \{c\}, \{b, c\}\}$

$$Y = \{a, b, c\}; \ \sigma = \{\emptyset, Y, \{a, b\}\}\$$

Let $f:(X,\tau) \to (Y,\sigma)$ be defined by f(a) = b; f(b) = c; f(c) = aHere f is g^{**} -continuous but not $(r^*g^*)^{**}$ -irresolute.

Remark 4.16: $(r^*g^*)^{**}$ -irresoluteness is independent of gs-irresoluteness, αg -irresoluteness, gp-irresoluteness and g^{**} -irresoluteness.

Proposition 4.17: Composition of $(r^*g^*)^{**}$ -irresolute maps is again an $(r^*g^*)^{**}$ -irresolute map.

References

- [1] Arya S.P and Nour T.M , characterizations of S normal spaces , Indian J.Pure app.Math,21(1990)
- [2] Devi.R, Maki H and Balachandran K, Generalized α-closed maps and α generalized closed maps, Indian.J.Pure.Appl.Math, 29(1)(1998),37-49.
- [3] MakiH, Umehara J and Noiri T , Every topological space is pre- $T_{1/2}$ Mem.Fac.Sci.kochi univ.ser.a, math.,17(1996),33-42
- [4] Meenakumari .N and Indira T, on (r*g*)* closed sets in Topological spaces, IJSR, volume 4, Issue 12, December 2015. ISSN (on Line), 2319 7064, Impact fac 5.611.

- [5] Meenakumari. N and Indira T,(r*g*)* continuous maps in Topological spaces IJDR, vol- 6, Issue 04, PP7402 7408, April 2016.Imp.Fac: 4.25
- [6] Meenakumari.N and Indira T , r*g* closed sets in topological spaces , Annals of Pure and Applied Mathematics vol.6, No. 2,2014,125-132
- [7] Pauline Mary Helen.M, Veronica Vijayan, Ponnuthai Selvarani, g** closed sets in Topological Spaces, IJMA 3(5), (2012), 1-15.
- [8] Veerakumar M.K.R.S, Between closed sets and g closed sets, Mem. Fac. Sci. Koch Univ. Ser. A. Math., 21 (2000) 1-19.