Original Research Article

EVALUATION OF ANTI-ARTHRITIC ACTIVITY OF ETHANOLIC EXTRACT OF TABERNAEMONTANA DIVARICATA L. FLOWERS IN WISTAR ALBINO RATS

Sayyed Mateen¹, Amjad Ali², Allahbaksh Shaikh³, Javed Akhatar Ansari⁴, Imtiyaz Ansari^{5*}

¹Associate Professor, Dept. of Pharmacology, Oriental College of Pharmacy, Sanpada, Navi Mumbai -400705, India. Email: ¹mateen.sayyed@ocp.edu.in

²Associate Professor, Dept. of Pharmaceutical Chemistry, Oriental College of Pharmacy, Sanpada, Navi Mumbai - 400705, India.

³Associate Professor and Principal, Dept. of Pharmacology, Delight College of Pharmacy, Bheema-koregaon. ⁴Professor, MESCO College of Pharmacy, Hyderabad

^{5*}Assistant Professor and HOD, Dept. of Pharmacology, Oriental College of Pharmacy, Sanpada, Navi Mumbai -400705, India.

*Corresponding Author: Imtiyaz Ansari

*Assistant Professor and HOD, Dept. of Pharmacology, Oriental College of Pharmacy, Sanpada, Navi Mumbai -400705, India, E-mail: imtiyaz.ocp@gmail.com

Abstract:

Objective: To evaluate Anti-Arthritic activity of Ethanolic Extract of Tabernaemontana *divaricata L. Flowers* (EETF).

Method: Natural based products with therapeutic properties has become an important field of interest in many countries. Animals were injected with 0.1 ml of CFA (Complete Freund's Adjuvant) intradermally. Ethanolic extract of *Tabernaemontana divaricata L. Flowers (EETF)* treated at different concentration i.e. 100 mg/kg, 150 mg/kg, 200 mg/kg orally. The rats body weight, paw volume using digital plethysmometer, stair case climbing, motility, hematological parameter, radiography, histopathology was measured.

Result: The analysis of various arthritic assessment parameters used in this study revealed that Ethanolic Extract of *Tabernaemontana divaricata L. Flowers (EETF)* have considerable effect in preventing development of arthritis disease severity. Moreover, Ethanolic Extract of *Tabernaemontana divaricata L. Flowers (EETF)* revealed significant anti arthritis activity in both normal and CFA induced arthritis rats.

Conclusion: Ethanolic Extract of *Tabernaemontana divaricata L. Flowers* (*EETF*) shows pharmacological rationale for the traditional use of the plant against inflammatory conditions like rheumatoid arthritis.

Keywords: Complete Freund's Adjuvant(CFA), Body Weight, Paw Volume, Stair case, Motility.

1. INTRODUCTION

Animal model of inflammatory disease are used extensively in analysis of pathologic process of inflammatory arthritis and within pharmaceutical industry in testing of potential anti arthritic agents ^[1,2]. Rheumatoid arthritis (RA) is a chronic inflammatory disease that affects primarily the joints manifesting as pain, stiffness, and synovitis (inflammation of the synovial membrane) leading in turn to particular destruction ^[3,4,5]. The risk of arthritis increases with increasing age. RA will occur at any age, however in men onset before age forty five years is uncommon ^[6]. The ultimate goal of RA treatment is to stop or atleast minimize joint damage, alleviate pain and maintain normal joint function ^[7,8].

Trema orientalis plant is evergreen medium sized of family, Ulmaceae or Cannabaceae. Species in this family are significant in food industry as well as in pharmacologically as a traditional medicine

in various ailments. It is valued for plup wood production and widley used as medicine in various parts of Africa. Common names: Indian Charcoal Tree, Indian Nettle, Oriental nettle, Pigeon wood. Vernacular names: Marathi- Ghol & kapshi, Telugu- Kakamushti, Hindi-Gio,Chikan,Gol,Gorklu, Sanskrit-Jivanti^[9]. The young leaves are eaten as spinach by the Zulus in South Africa, who also use the roots and stem bark as traditional medicine. The fruit, leaves, bark, stem, twig and seeds are extensively used in traditional medicine^[10].

2. MATERIAL AND METHOD:

Animals:

Male Wistar Albino Rats (100-150 g) were used for the study. The animals were obtained from Bombay Veterinary College Parel, Mumbai 400012. The use of these animals and the study protocols were approved by CPCSEA recognized institutional animal ethics committee (IAEC). Rats were kept at the animal house of Oriental College of Pharmacy, Sanpada, Navi Mumbai. In polypropylene cages, at $27\pm 3^{\circ}$ C, maintain under Standard condition dark: light cycle. They were provided with commercial rat feed and water given ad libitum.

Animals and experimental design:

After 1 week of acclimatization the rats were randomized in different groups (n=6). 6 rats served as normal control (Group 1). 30 animals were immunized and injected with 0.1 ml of CFA on day 0, intradermally at the base of the tail and randomized into 5 different groups. Out of which 6 animals served as positive control (Group II), which did not receive any treatment and remaining animals were divided into Group III, IV, V and VI (6 animals each) which received treatment.

3. RESULTS AND DISCUSSION

Anti-Arthritic Study:

Body Weight: The body weight of animals for all groups was monitored from 0thday till 27thday at three days of interval i.e. 0,3,6,9,12,15,18,21,24,27 ^[11,12,13]. Results are reported in (Table 1) and (Fig. 1)

Percent change in body weight was calculated by formula:

Body weight on day (X) - Body weight on day (0) X 100

Body weight on day (X)

Days post	% Change in Body Weight								
immunization		Groups							
	Normal	Normal Disease Indomethacin Low Dose Meidum Dose High							
	control	control	(2.5mg/kg)	(100 mg/kg)	(150 mg/kg)	(200mg/kg)			
0	0	0	0	0	0	0			
3	8.27±2.06	5.92±1.0	3.66±0.46	2.77±0.32	5.35 ± 0.53	4.87±1.25			
6	13.84±1.37	10.27±0.88	9.26±0.82	6.80±0.24	8.70±0.77	8.57±1.45			
9	18.17 ± 1.50	13.91±0.84	14.34±0.98	15.66±0.47	13.44±1.23	13.26±1.90			
12	22.93±0.85	8.20±1.10***	11.26±0.91	10.63±0.46	9.43±1.69	10.55±2.06			
15	26.08±0.83	6.30±1.16***	8.04±0.69	4.06±1.26	7.19±1.71	7.21±2.39			
18	28.78 ± 0.83	4.34±1.14***	12.74±1.22#	13.31±1.11#	11.76±1.62	11.02±1.87			
21	31.60±0.82	0.76±0.28****	17.03±1.47###	8.66±2.07	16.02±1.58##	14.08±1.71##			
24	34.49±0.92	2.60±1.15****	20.74±1.28###	14.99±1.57#	19.57±1.26##	18.28±1.81##			
27	38.50±0.70	6.57±1.31****	23.80±0.39###	17.84±0.96##	22.40±1.01##	22.58±1.66##			

Table 1: Results of % Changes in Body Weight

All measurements are expressed as Mean \pm SEM with n=6 for each group. Values were considered significant when p<0.05 (95 % confidence interval). Two way ANOVA followed by Tukey's test

and multiple comparison was made between different groups. * significantly different when compared with normal control group, # significantly different when compared with disease control group. *, #, p<0.05, **, ## p<0.01, ***, ### p<0.001, ****, ####p<0.001.

Fig. 1: % change in body weight

Paw Volume: The paw volumes were measured using Digital Plethysmometer (VJ instrument).Volumes of both right and left hind paws were taken on 0th,3rd,6th,9th,12th,15th,18th,21st,24th,27th day ^[14].Results are in the (Table 2,3) and (Fig.2,3). Percent change in paw volumes calculated by formula:

Paw volume on day X (ml) – Paw volume on day 0(ml) X 100

Volume on day X (ml)

Days post	% Change in	% Change in Right Hind Paw Volume							
immunization	Groups	Groups							
	Normal	rmal Disease Indomethacin Low Dose Meidum Dose High Dose							
	control	control	(2.5mg/kg)	(100 mg/kg)	(150 mg/kg)	(200mg/kg)			
12	10.09±1.11	15.44±0.66	14.90±0.25	19.18±0.82	19.86±0.57	15.15±0.87			
15	11.78±1.31	20.06±0.86**	19.76±0.23	22.03±1.26	22.30±0.64	18.64±0.90			
18	12.95±1.34	23.55±1.21**	18.32±0.24 [#]	24.39±1.27	24.27±1.51	21.70±1.36			
21	32.98±1.38	27.52±1.27***	17.59±0.33 ^{##}	26.35±1.82	21.35±0.99 [#]	19.97±1.47 [#]			
24	14.66±1.37	30.81±1.10***	16.56±0.41 ^{###}	28.42±1.41	18.53±0.41 ^{###}	17.58±0.99 ^{###}			
27	15.32±1.36	28.88±1.14***	15.51±0.36 ^{###}	26.90±1.39	16.54±0.40 ^{##}	16.00±0.81 ^{##}			

Table 2: Result of % Change in Right Hind Paw Volume

All measurements are expressed as Mean \pm SEM with n=6 for each group. Values were considered significant when p<0.05 (95 % confidence interval). Two way ANOVA followed by Tukey's test and multiple comparison was made between different groups. * significantly different when compared with normal control group, # significantly different when compared with disease control group. *, #, p<0.05, **, ## p<0.01, ***, ### p<0.001, ****, ####p<0.0001.

Fig. 2: % Change in Right Hind Paw Volume

Days post	% Change	% Change in Left Hind Paw Volume						
immunization	Groups							
	Normal	Disease	Indomethacin	Low Dose	Meidum Dose	High Dose		
	control	control	(2.5mg/kg)	(100 mg/kg)	(150 mg/kg)	(200mg/kg)		
12	10.87±2.08	23.38±0.43**	19.66±0.82 [#]	16.92±1.88	19.12±0.84 [#]	17.41±1.38 [#]		
15	11.87±2.05	38.31±2.54**	22.16±0.97 ^{##}	33.24±2.21	24.12±1.18 ^{##}	24.10±1.67 [#]		
18	13.22±1.86	53.04±2.05****	21.19±1.02 ^{####}	48.05±1.08	40.36±3.66 [#]	14.22±1.37 [#]		
21	15.09±1.84	57.97±1.59***	20.22±1.04 ^{####}	55.91±1.15	38.59±3.11 ^{##}	37.80±1.26 ^{###}		
24	16.89±1.78	63.83±2.19***	18.52±1.17 ^{####}	54.65±1.34 [#]	37.34±3.16 ^{###}	35.61±1.19 ^{###}		
27	18.18±1.75	51.91±2.73***	17.35±1.43 ^{####}	49.17±2.61	35.28±2.55 ^{##}	32.28±1.45 ^{###}		

Table 3 : Result of %	Change in l	Left Hind Pay	w Volume

All measurements are expressed as Mean \pm SEM with n=6 for each group. Values were considered significant when p<0.05 (95 % confidence interval). Two way ANOVA followed by Tukey's test and multiple comparison was made between different groups. * significantly different when compared with normal control group, # significantly different when compared with disease control group. *, #, p<0.05, **, ## p<0.01, ***, ### p<0.001, ****, ####p<0.001.

Fig. 3: % Change in Left Hind Paw Volume

Stair case climbing: Overnight fasted animals were trained for one week to climb a staircase with steps at height of 5, 10, and 15 cm having water at the second and food at the third step. Climbing ability of the rats groups was scored 0 if the rats did not climb; 1, if the rats climbed onto step 1; 2, if the rats climbed onto step 2 and 3, if the rat could climb all the three steps. All the groups were evaluated in this manner on 14th, 21st and 27th day of treatment period ^[15].Results in (Table 4) and (Fig. 4).

Days post	Stair case	Stair case Climbing Score						
immunization	Groups							
	Normal	Disease	Indomethacin	Low Dose	Meidum Dose	High Dose		
	control	control	(2.5mg/kg)	(100 mg/kg)	(150 mg/kg)	(200mg/kg)		
14	3.00±0.00	0.67±0.21***	1.33±0.33	0.67±0.21	1.33±0.33	1.33±0.33		
21	3.00±0.00	0.17±0.17 ^{****}	3.00±0.00 ^{####}	0.50±0.22	1.50±0.22 ^{##}	2.83±0.17 ^{###}		
27	3.00±0.00	0.17±0.17****	3.00±0.00 ^{####}	0.67±0.21	2.50±0.22 ^{##}	3.00±0.00 ^{#####}		

 Table 4: Results of Stair case Climbing

All measurements are expressed as Mean \pm SEM with n=6 for each group. Values were considered significant when p<0.05 (95 % confidence interval). Two way ANOVA followed by Tukey's test and multiple comparison was made between different groups. * significantly different when compared with normal control group, # significantly different when compared with disease control group. *, #, p<0.05, **, ## p<0.01, ***, ### p<0.001, ****, ####p<0.0001.

Fig. 4: Stair case Climbing

Motility : The rats were observed for a period of minutes and given scores. Scored 2, if the rat avoided touching the inflamed joint to the floor while walking; 1, if the rat walked with little difficulty, but the toe touched the floor; 0, if the rat walked easily. All the groups were evaluated in this manner on 14th, 21st and 27th day of treatment period ^[16].Results in (Table 5) and (Fig. 5).

Days post	Motility					
immunization	Groups					
	Normal	Disease	Indomethacin	Low Dose	Meidum Dose	High Dose
	control	control	(2.5mg/kg)	(100 mg/kg)	(150 mg/kg)	(200mg/kg)
14	0.00 ± 0.00	2.00±0.00****	2.00±0.00	0.67±0.21	2.00±0.00	2.00±0.00
21	0.00±0.00	2.00±0.00 ^{****}	0.33±0.21 ^{##}	2.00±0.00	1.17±0.17 [#]	0.50±0.22 ^{##}
27	0.00±0.00	2.00±0.00****	0.00±0.00 ^{####}	2.00±0.00	1.17±0.17 [#]	1.17±0.17 ^{###}

Table 5:	Results	of Motility
Table 5.	nesuits	UI MIUUIILY

All measurements are expressed as Mean \pm SEM with n=6 for each group. Values were considered significant when p<0.05 (95 % confidence interval). Two way ANOVA followed by Tukey's test and multiple comparison was made between different groups. * significantly different when compared with normal control group, # significantly different when compared with disease control group. *, #, p<0.05, **, ## p<0.01, ***, ### p<0.001, ****, ####p<0.001.

Hematology: On 27thday one day before sacrifice, blood samples were withdrawn from retro orbital vein puncture under mild anaesthesia and kept under suitable blood collection tube (BD Vacutainer®) and submitted to Dr.D.P.Chaudhari,Parel. Hematological parameter includes Hemoglobin (Hb), Red blood cell (RBC), White blood cell (WBC) ^[17,18,19].Results in (Table 6) and (Fig.6).

Hematology	Groups						
	Normal	Disease	Indomethacin	Low Dose	Meidum Dose	High Dose	
	control	control	(2.5mg/kg)	(100 mg/kg)	(150 mg/kg)	(200mg/kg)	
Hb	15.57±0.12	14.03±0.03*	16.17±0.09 ^{##}	14.47±0.18	15.30±0.12 [#]	15.77±0.09 ^{##}	
RBC	8.57±0.02	7.78±0.05 ^{**}	8.21±0.03 ^{##}	7.89±0.05	8.07±0.04 [#]	8.18±0.04 ^{##}	
WBC	17.43±0.15	20.07±0.12**	7.60±0.23 ^{####}	18.00±0.06 [#]	17.23±0.19 [#]	16.50±0.12 ^{##}	

Table 6: Results of Hematology

Values are expressed as Mean \pm SEM with n=3 for each group. Values were considered significant when p<0.05 (95 % confidence interval). Two way ANOVA followed by Tukey's test and multiple comparison was made between different groups. * significantly different when compared with normal control group, # significantly different when compared with disease control group. *, #, p<0.05, **, ## p<0.01, ***, ### p<0.001, ****, ####p<0.001.

Fig. 6 Hb,RBC,WBC levels

Radiography: Radiographs of the ankle joints were taken on 27th day, a day before euthanasia. Plain radiographs of the ankle joints were taken at the Petit Hospital for Animals,Parel . Rats were anesthetized before taking radiographs using light ether anesthesia ^[20]. Results in (Table 7).

Normal	Disease	Indomethacin	Low Dose (100	Meidum Dose	High Dose
control	control	(2.5mg/kg)	mg/kg)	(150 mg/kg)	(200mg/kg)
A		2	2		S
Radiographic	Radiographic	Radiographic	Radiographic	Radiographic	Radiographic
analysis of the	analysis of the	analysis of rats	analysis of the	analysis of rats	analysis of the
normal control	disease control	treated with	rats with EEIF	treated <i>EEIF</i>	group treated
rats snowed	rat immunized	Indomethacin (2.5 mg/kg/day)	(100mg/kg/day)	(150mg/kg/day)	with $EEIF$
architecture of	shown bony	(2.5mg/kg/day)	degree of soft	soft tissue	(20011g/Kg/uay)
the ankle joints	erosions to a	soft tissue	tissue swelling	swelling when	degree of soft
No bony	higher degree	swelling when	when compared	compared to	tissue swelling
erosions.	when compared	compared with	with normal	disease control	when compared
ankylosis, soft	to normal	normal control	control group.	rats. Changes in	with disease
tissue swelling	control group.	group. New	Ankylosis and	bone	control rats.
and new bone	Soft tissue	bone	joint space	architecture, joint	Bone
formation were	swelling were	formation,	narrowing was	space narrowing,	architecture was
observed.	observed.	bony erosions	minimal when	erosions were	retained with
	Ankylosis of	and joint	compared to	observed to a	EETF (200
	the ankle joints	alignment	disease control	lesser degree	mg/kg/day)
	were observed.	changes were	group.	when compared	treated rats.
	New bone	not observed.		to disease control	
	tormation was			group.	
	also observed				
	to a minimal				
	degree.				

 Table 7 : Results of Radiography

Histopathology: Animals were sacrificed on 28th day, Ankle joints isolated for histopathological evaluation were stored in 10% neutral buffered formalin solution (10ml of formaldehyde was made up to 100ml with phosphate buffer solution, pH 7.4) submitted to Astha Laboratory,nerul. Tissue were prepared and stained with haematoxylin and eosin stain. Slides was subjected to light microscopic analysis for evaluation of Infilteration of inflammatory cells in synovium, cartilage damage, Bone marrow depletion ^[21,22,23].Results in (Table 8).

Normal control	Disease	Indomethacin	Low Dose (100	Meidum Dose	High Dose				
	control	(2.5mg/kg)	mg/kg)	(150 mg/kg)	(200mg/kg)				
Normal	When	When compared	Infiltration of	Bone marrow	Cartilage and				
architecture of	compared to	with disease	Inflammatory	and cartilage	Infiltration of				
the ankle was	Normal	control group, it	cells of	destruction was	Inflammatory				
observed.	Control	was observed	Synovium was	reduced to a	cells of				
Histopathological	Group, it was	that the articular	mild observation	mild extent	Synovium were				
changes in ankle	observed that	cartilage	seen. Bone	when compared	minimal when				
joint of Adjuvant	Moderate	destruction and	marrow	with disease	compared with				
induced arthritis	Synovial	Infiltration of	destruction was	control group.	disease control				
such as synovial	hyperplasia	Inflammatory	observed to	Minimal	group. The Bone				
cell	and Cartilage	cells of	moderate	Infiltration of	marrow was				
derrangement	damage was	Synovium was	degree,when	Inflammatory	restored to				
and	seen in ankle	restored to	compared to	cells of	normal in				
hyperplasia,bone	joints of rats	normal. It was	Indomethacin	Synovium were	comparison with				
and cartilage	injected with	also observed	treated group.	evident from	disease control.				
degradation,	complete	that Bone		histopathological					
inflammatory	Freund's	marrow was		observations.					
cell infiltration	adjuvant.	mild in							
were absent.	Mild bone	comparison to							
	marrow was	disease control							
	also observed.	rats.							
		Improvement							
		towards normal							
		architecture of							
		the ankle joint							
		was observed.							

Table 8 : Results of Histopathology

4. CONCLUSION

The findings of the current study indicate that Ethanolic Extract of *Tabernaemontana divaricata L*. *Flowers EETF*(200 mg/kg) possess anti-arthritic activity.

Acknowledgement

The authors thank Oriental college of Pharmacy for constantly supporting and encouragement for the research work.

Conflict of Interest

The creators announce that there are no irreconcilable circumstances with respect to the production of this paper.

5. REFERENCES

- 1. A.M. Bendele, Bolder PATH. Animal models of rheumatoid arthritis, Inc., A.J Musculoskel Neuron Interact 2001; 1(4):377-385.
- Salmi Abdul Razak, Farida Islahudin, Ahmad Fuad Shamsuddin, Nor Shuhaila Shahril. A study on Leflunomide-induced liver injury in Rheumatoid Arthritis Patients. Research J. Pharm. and Tech. 6(5): May 2013; Page 556-561
- 3. Gayathri Devi Kumaresan, Dhanraj M.. Efficacy of Cox-2 inhibitors in the Clinical Management of TMJ Arthritis: A Review. Research J. Pharm. and Tech 2017; 10(12): 4439-4441. doi: 10.5958/0974-360X.2017.00817.4

- 4. Darren L. Asquith, Ashley M. Miller, Iain B. McInnes and Foo Y. Liew. Animal models of rheumatoid arthritis EUr. J. Immunol. 2009.39: 1991–2058.
- Shyama S. Kumar, Divya Bhosle, Akshay Janghel, Shraddha Deo, Parijeeta Raut, Chetan Verma, Mukta Agrawal, Nisha Amit, Mukesh Sharma, Tapan Giri, D. K. Tripathi1, Ajazuddin, Amit Alexander. Indian Medicinal Plants Used for Treatment of Rheumatoid Arthritis. Research J. Pharm. and Tech. 8(5): May, 2015; Page 597-610. doi: 10.5958/0974-360X.2015.00099.2
- 6. Alamanos Y, Voulgari PV, Drosos AA; Voulgari; Drosos. "Incidence and prevalence of rheumatoid arthritis based on the 1987 American College of Rheumatology criteria: a systematic review". Semin. Arthritis Rheum. 2006; 36(3): 182–8.
- 7. D Kilimozhi, V Parthasarathy, Manavalan R. A Review on Arthritis. Research J. Pharm. and Tech. 4 (1): January 2011; Page 29-36.
- 8. Shikha Srivastava, Shatish Patel, S.J. Daharwal, Deependra Singh, Manju Singh. Rheumatoid Arthritis: An Autoimmune Disease Prevalent in Females. Research J. Pharm. and Tech. 9(2): Feb., 2016; Page 170-172. doi: 10.5958/0974-360X.2016.00030.5
- 9. Guruprasad B, Chaudhary P, Choedon T, Kumar VL. Artesunate ameliorates functional limitations in Freund's complete adjuvant-induced monoarthritis in rat by maintaining oxidative homeostasis and inhibiting COX-2 expression. Inflammation 2015; 38: 1028-35.
- 10. Orwa C, A Mutua, Kindt R , Jamnadass R, S Anthony. 2009 Agroforest tree Database:a tree
reference and selection guide version 4.0.
(http://www.worldagroforestry.org/sites/treedbs/treedbases.asp).
- Iwu MM. Handbook of African Medicinal Plants. Boca Raton, Florida: CRC Press Inc.,; 1993. p. 251-2.
- 12. M. Selvakumar, Vijayalakshmi Chinniah, Venkata Rathina Kumar Thiagarajan. Antiobesity Activity of Ficus religiosa on High Fat Diet Induced Model. Research J. Pharm. and Tech. 8(6): June, 2015; Page 679-682.
- Shurooq Wesam Al-Shaibani, Waleed J. A. Al-kelaby, Wasna'a M. Abdulridha, Hayfaa Jaber Hussein, Bushra Habeeb Al-Molla. Evaluation the effect of CaO Nanoparticles on the body weight and Lipid factors in male Wister Rats. Research J. Pharm. and Tech. 2019; 12(11): 5275-5280.
- 14. Harith Jameel et al.in vivo anti- arthritic and anti-noceciptive effects of ethanol extract of Moringa oleifera leaves on complete Freund's adjuvant (CFA)-induced arthritis in rats (2017), https://doi.org/10.1016/j.imr.2017.11.002
- 15. Bihani GV, et al. Anti-arthritic activity of methanol extract of Cyathocline purpurea (whole plant) in Freund's complete adjuvant-induced arthritis in rats. Biomed Aging Pathol (2014), http://dx.doi.org/10.1016/j.biomag.2014.04.007
- 16. Bandawane, D. D., Beautikumari, S., Gate, S. S., & Patel, A. N. (2014). Evaluation of antiarthritic activity of ethyl acetate fraction of Cassia auriculata Linn. leaves. Biomedicine & Aging Pathology, 4(2), 105–115. doi:10.1016/j.biomag.2013.10.009.
- 17. De Castro Costa M, De Sutter P, Gybels J, Van Hees J. 1981. Adjuvant induced arthritis in rat: A possible animal model of chronic pain. Pain 10: 173–186.
- Nozdrin G. A., Rafikova E. R., Yakovleva M. S.. Hematological and serum biochemical profile of broilers during treatment with Vetom 21.77. Research J. Pharm. and Tech 2019; 12(8): 3739-3744.
- Sugavasi Raju, Senthilkumar Sivanesan, Kanchanalatha Gudemalla, Ravi Mundugaru, Madhankumar Swaminathan. Effect of Ginkgo biloba extract on Hematological and Biochemical alterations in Fluoride intoxicated Wistar rats. Research J. Pharm. and Tech 2019; 12(8):3839 -3846
- 20. Omnia Ahmed Mohamed Abdel El- Gaphar *et al* Effect of Losartan in Complete Freund's Adjuvant –Induced Arthritis in Rats Iranian Journal of Pharmaceutical Research (2018), 17 (4):

1420-1430.

- 21. Kalpesh Ramdas Patil et al Anti-Arthritic Activity of Bartogenic Acid Isolated from Fruits of Barringtonia racemosa Roxb. (Lecythidaceae) Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2011, Article ID 785245, 7 pages doi:10.1093/ecam/nep148.
- 22. Mehta A, Sethiya N, Mehta C, Shah G. Anti-arthritis activity of roots of Hemidesmusindicus R. Br. (Anantmul) in rats. Asian Pac J Trop Med. 2012; 5(2):130–5.
- 23. Majda I. Abd AL Majeed, Ban Abdul-Majeed Esmaeel. Effect of Capparis spinosa L. Leaf bud Extract on The Hematological and Histological Changes Induced by Cyclophosphamide in Mice. Research J. Pharm. and Tech. 2019; 12(7):3245-3250.