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ABSTRACT  

Knowledge extraction is an important part of e-Health system. However, datasets in health domain are 

highly imbalanced, voluminous, conflicting  and complex in nature, and these can lead to erroneous 

diagnosis of  diseases. So, designing accurate and robust clinical diagnosis models for such datasets  

is a challenging task in data mining. In literature, numerous standard intelligent models have been 

proposed for this purpose but they usually suffer from several drawbacks like lack of 

understandability, incapability of operating rare cases, inefficiency in making quick and correct 

decision, etc. In fact, specific health application using standard intelligent methods may not satisfy 

multiple criteria. However, recent research indicates that hybrid intelligent methods (integrating 

several standard ones, can achieve better performance for health applications. Addressing the 

limitations of the existing approaches, the present research introduces a new hybrid predictive model 

(integrating C4.5 and PRISM learners) for diagnosing effectively the diseases (instead of any specific 

disease) in comprehensible way by the practitioners with better prediction results in comparison to the 

traditional approaches. The empirical results (in terms of  accuracy, sensitivity and false positive rate) 

obtained over fourteen benchmark datasets demonstrate that the model outperforms the base learners 

in almost all cases. The performance of the model also claims that it can be good alternative to the 

specialized learners (each designed for specific disease) published in the literature. After all, the 

presented intelligent system is effective in undertaking medical data classification task. 
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Focal points 

Disease modelling 

The present research focuses on designing hybrid model to better understand clinical conditions and 

to detect diseases more accurately for undertaking treatment properly. 

Important terminologies 

 Classification dataset:  A classification dataset(D) is described by a number of non-target 

attributes (say a1, a2, .. an) and  a target (or class) attribute (say C). Each instance (i.e., 

example or case) in D takes specific values of the attributes. The values may be string (i.e., 

nominal), e.g., values of temperature are -low, medium and high. Value  may be continuous 

that  can occupy any value over a continuous range, e.g., 2.0045. It may have long-range 

value, e.g., 10
5
, 2

13
  or more.  However, any data-discretizer may be applied on such a dataset 

to get only integer attribute values corresponding to their non-discretized values by 

performing suitable mapping scheme. MIL (minimum information loss)-discretizer is such a 

data-discretized which is adopted in the present research. For more details regarding dataset 

and discretized attribute values, one may refer Appendix-A.  

 Imbalanced dataset: A dataset in which the number(s) of instances of some class(es) is/are 

very less  in comparison to other classes, is termed as imbalanced dataset. The instances of a 

class with very less in number are known as rare cases. 

 Voluminous dataset: Dataset that consists of large number of instances or large number of 

attributes (i.e., high dimensionality) or both, is usually called as voluminous dataset. 

 Conflicting data set:  Dataset that possesses instances with different class values for identical 

non-target attribute values, is termed as conflicting dataset. In particular, such instances are, 

indeed, inconsistent instances that cause uncertainty in making decision by the system. 

 Incomplete dataset:   A dataset in which many information (i.e., values of attributes) are 

either missing or incomplete, is known as incomplete dataset. 

 Complex (or  uncertain) dataset:  If drawing any conclusion is very difficult for a dataset, 

then the set is called as complex or uncertain dataset. An uncertain dataset is often called as  

vagueness dataset.   

 Non-normal data set: Data set with one or more above mentioned issues is called as non-

normal dataset.  

 Parametric and non-parametric learning model: A learning model that summarizes data by a 

set of fixed size parameters (i.e., co-efficients) and a function (e.g.,  y=x0+x1a1+x2a2+.., where 

xi represents the i-th parameter and ai denotes the i-th attribute of the dataset) is called as 

parametric learning model. In particular, the values of the parameters  are learned from  

training data. However, no such function is used in non-parametric learning model. 
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 Entropy-based classifier: An entropy-based approach uses an entropy function (e,g., 

information gain function)  based on its instantaneous output probabilities for each example 

and combines the output probabilities of the different classifiers before making the final 

decision. It is detailed in Section-2.1. 

 

I.  Introduction 

Designing automated intelligent model is a growing need from data, as the amount of data stored in 

databases increases in rapid manner and the number of human data analysts grows at a much smaller 

rate than the amount of stored data. Machine learning[1], a field of data mining [2] is an excellent 

process for designing such models. The process has capability to discover insightful, interesting and 

novel patterns which are descriptive, understandable and predicative from large amount of data. In 

particular, it is an important part  of  knowledge discovery from databases[3-4]. A number of machine 

learning and knowledge discovery techniques have been developed for inducing decision rules and are 

being used in various disciplines. Some of the widely used techniques are  decision trees(DT)[5], 

neural networks [6], rough sets [7] and decision tables[8], PRISM[9], Repeated Incremental Pruning 

to Produce Error Reduction(RIPPER)[10], naïve Bayes[11], etc. Truly speaking, each of these has 

some merits and demerits. Precisely, no model is well-suited for all data sets. However, the primary 

advantages of these techniques are that they are usually data driven (based on past data), non-

parametric and less restrictive to a priori hypothesis. Importantly, decision tree learner (among the 

commonly used learners) is considered suitable for both non-normal and non-homogeneous datasets 

and it shows an average prediction performance for datasets of almost all domains. Also, the 

predictive power of PRISM can be seen as acceptable when contrasted to other classic data mining  

approaches such as search methods, decision trees, neural networks, associative classification and 

many others, as it explores more generalised rules [9]. In particular, the algorithm optimizes the purity 

of a rule, that is, it maximizes the percentage of positive examples among all covered example[12]. 

       At the present date, the use of data mining techniques  is  gradually increasing  in medical 

diagnosis because of their potential capabilities. In practice, treatments are made by the physicians 

where a physician typically accumulates his/her knowledge based on the patient’s symptoms and 

applies the knowledge/memory (prognostic relevance of symptoms) towards diagnosing diseases. It is 

well-accepted that diagnostic accuracy of patients is here highly dependent on physician’s experience, 

that is, it varies from expert to expert. Also, manual diagnostic is a time consuming job. So, designing 

computerized system from past diagnosis data may be the essential solution in this purpose. Now-a-

days, the use of machine learning techniques[1] is gradually increasing in medical diagnosis because 

of their potential capabilities. In particular, any accurate, precise and reliable predictive model may 

significantly assist the medical practitioners to improve diagnosis and treatment processes of 

individual’s diseases in faster way. At the same time, it reduces the cost associated with patient 
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treatment. However, medical data are usually unstructured and they are by nature imbalanced, 

conflict, incomplete and vagueness. So, designing accuracy-based reliable automated diagnostic  

model is a challenging  task to the researchers. A wide range of computerized clinical decision 

support systems (CDSS) have been modelled over the years to assist physicians in making decisions. 

For a review, one may see[13-22, 64-72, 75]. Undoubtedly, the systems are used for diagnosis, 

prediction, classification and risk forecasting of various diseases on the basis of electronic medical 

records(EMR) of patients. A  schematic of  CDSS is depicted in Fifure-1.1. 

 

                                         Fig-1.1: A schematic of  CDSS 

Given below are some desirable characteristics of any good CDSS.  

i) Learned knowledge in any CDSS is preferred in 'IF-THEN' decision rule format so 

that practitioner can easily interpret the rules for predicting diseases. 

ii) Rules in 'IF-THEN' structure must  be accurate (i.e., high prediction rate). 

iii) Size of the rule set should be concise, and less number of informative  pre-conditions 

in each rule is highly desired. 

iv) Rules of all classes (even for rare cases) must be present in the rule set for predicting 

unseen data accurately. 

v) There must not have any conflict rules in the set. 

   In context of CDSS, the PRISM algorithm (although, it is an old classifier) may be successfully 

applied in medical diagnosis and prediction, since  it has ability to generate pure decision rules for all 

class-labelled instances. Accordingly, it does not ignore the rare case instances which are frequently 

observed in medical datasets. 

   Although, several clinical models have been developed but each of  these  is unfortunately suffering 

from one or more deficiencies as listed below. 

 Disease specificity of model:  No generalized model is designed for showing better or on an 

average disease prediction accuracy over all medical datasets. In other words, each of the 
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existing systems  is well-suited for a specific dataset. Examples include the studies presented 

in [13, 15, 17, 21-27, 65-72, 76]. 

 Black-box model: Most of the present diagnostic methods are black-box models, that is, they 

have no explanation power in terms of understandability of decision rules [15, 17, 28, 29, 66-

72, 75]. As a result, the models are unable to provide the reasons underlying diagnosis to 

physicians; therefore, further insights are needed  for those algorithms. 

 Incapability of operating high-dimensional and inconsistent data: In general, each of the 

existing systems has deficiency to handle high dimensional, inconsistent and vagueness 

(uncertain)  clinical data.  

 Low power of accurate rule generation: Most of the existing approaches suffer from 

generating accurate rules  which are highly desired in CDSS. As a result, such systems result 

uncertainty and imprecision in decision making[77]. 

 The models are usually dependent on the hypothesis of statistical techniques. 

  Obviously, resolving all the issues together and constructing a generalized accurate disease 

predictive model (i.e., model with highly accurate rules) is a key challenge in medical applications. 

Recall that any individual competent learner in general performs well on specific diseases. That is 

why, combination of the learners may be effective to design a generalized disease predictive model 

and the research has gained much importance in this respect. 

     It may be noted here that Sarkar et al.[30, 31] proposed some ensemble approaches (combining 

decision tree learner with genetic algorithm) to improve classification performance over datasets 

irrespective to domain, size and class imbalance issues. More specifically, they have used  

classification problems of both medical and non-medical domains in their experiments. However, 

learning time of these approaches increases unexpectedly due to the application of genetic 

algorithm(GA). Further, the  objective functions (i.e., fitness functions in respect to GA) are proposed 

with the point in mind that the datasets may belong to any domain. Hence, these approaches may not 

be treated  as specialized  for medical data sets. 

    In recent years, rough set rule induction algorithms are being actively utilized for the extraction of 

decision rules from various medical datasets[32-37] because rough set theory has capability to handle 

the issues like uncertainty, missing values, conflict instances present in database. However, its main 

drawbacks are: 

(i) The theory relatively generates lager number of rules and (ii) the learning time is 

exponential. 

  As a result, this approach may not be well-suited for larger input data files.  

Also, in machine learning, neural networks have significant advantages for medical decision support 

applications[75]. However, one key limitation of this approach is the lack of ability to explain the 

prediction[78]. 
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Contribution of the present study 

To resolve the identified issues of the existing systems, the author attempt to design  a  generalized 

hybrid CDSS (combining some well-suited individual learners) and finally proposes a model by 

integrating  decision tree based learner (C4.5) and PRISM learner. However, it is well-accepted that 

choosing the learners that perform best for a particular dataset is a challenging task in data mining. 

Anyway, some reasons behind favouring C4.5 and PRISM  are listed below. 

 For asymmetrical distribution of the medical datasets, decision tree and PRISM methods are 

the suitable tools,  as they are not confined to non-parametric datasets only. 

 Both the learners are easy to implement and the training speed of each of  the two approaches 

is not high. 

 Each of C4.5 and PRISM learners is an example of white-box model, and has capability to 

express knowledge in terms of meaningful decision rules (in 'IF-THEN' form). As a result, 

they are closed compatible to be combined each other. In fact, rules in 'IF-THEN' format are 

simple and easy to understand, and these can empower decision makers (particularly in 

domain applications) that necessitate interpretations. In particular, such rules are highly 

desired in medical diagnosis, as they can easily be applied for predicting unseen objects. 

 Importantly, the PRISM algorithm focuses  only on the rule’s accuracy  to find more accurate 

rule that reduces chance of  false negative rate and it is highly expected in medical expert 

system. Actually, a high negative rate of cases increases worry and stress in patients, and 

increases the risk of patients [79]. Likewise, the C4.5 (an entropy-based classifier) also shows 

good performance on unseen data. In other words, it also has strength to generate accurate 

rules.  

 Again, C4.5 has high ability to handle uncertainty (vagueness) in data. That is why, this 

classifier shows better or on an average performance over datasets of almost all domains.  

 Lastly, the PRISM algorithm can tackle  rare case  issue to a great extent, as it separately 

considers instances of each class, including  the rare case instances  too.  

     The above mentioned promising strengths of both the learners (C4.5 and PRISM) theoretically 

assure that they are well-suited for modelling  an ensemble learner to operate medical datasets. As 

evidence, in 2014, Stahl and Bramer proposed a PRISM-based ensemble model and showed that the 

model was able to generate results comparable with classic PRISM algorithm[61]. Also, PART[62] is 

an example of integration of DT- based learner  and PRISM learner for handling medical datasets. In 

particular, the integrated system uses DT to filter out the rules generated by PRISM. However, in spite 

of having  strengths of PRISM and C4.5 methods, they have drawbacks such as: 

i) PRISM can’t handle noisy datasets that contain incomplete attributes and missing 

values. 
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ii) There is no clear mechanism on how to resolve conflicting rules in PRISM. 

iii) No clear rule pruning methodology is present in the original PRISM, and this may lead 

to generation of large numbers of rules[38].  

iv) On the other hand, the DT algorithm C4.5 usually ignores the rules of rare case 

instances in the generated rule set[73], and it is true that  most of the medical datasets 

are imbalanced in nature. 

Now, in order to resolve the limitations of PRISM and C4.5 learners, the present study aims to adopt 

the following tools and strategies: 

  The MIL-discretizer [52] to tackle noisy data 

  An appropriate data sampling scheme (i.e., a data level method)  to manage rare case 

issue  

  An innovative idea introduced in the hybrid approach to filter out high quality decision  

rules discarding conflicting rules- the idea  mainly focuses  on extracting small number of 

more accurate but conflictless  rules, since a smaller size of informative rule set must 

work fine for applications such as medical diagnoses and the general practitioners can 

enjoy a concise set of decision rules for daily diagnoses of their patients. 

   The paper is organized as follows. Section-2 presents the survey on the necessary methods which 

include C4.5, PRISM learners, the Interface s/w (for representing rules) and the classifier’s 

performance measuring metrics. Also, the description of the selected medical datasets (drawn from 

UCI Machine Learning Repository) and their preprocessing are covered in this section too. The 

proposed hybrid model (C4.5+PRISM) is detailed in Section-3. Section-4 presents the experiments 

conducted on the chosen datasets. Also, this section deals with discussion of the results obtained by 

the suggested model, its base learners and some state-of-the art other models for the chosen datasets. 

Concluding remarks as well as future scopes of the present research are summarized in  Section-5, 

whereas a short executive summary on the work is given in Section-6. 

2. Necessary Methods and Materials  

In this section, a brief description for each of the base learners (used in the present study) is  first 

presented. The Interface[60] s/w for tabular like rule-representation, the performance evaluation 

metrics of the classifiers adopted in this research, the selected datasets (i.e., materials) and its pre-

processing are also explained in this section.   

2.1  C4.5:  A  decision  tree-based  classifier 

C4.5[5] is a well-known rule induction algorithm to solve classification task. The algorithm was 

proposed by Professor Ross Quinlan, University of Sydney, in 1992. It is, indeed, the extended 

version of ID3 algorithm[39]. In comparison to ID3, C4.5 includes extra features like handling 

missing values, managing continuous attributes, pruning trees  and others. 



8 

 

    Anyway, the primary goal of this learner is to minimize the doubt (i.e., impurity) in a dataset 

(representing information). In this purpose, the learner starts by choosing the best  informative 

attribute and splits the dataset. The process is applied recursively on each partitioned of the dataset, 

and continues till no data is left to split or no new attribute is left to process (which one appears 

earlier). The output given by the process is a decision tree. 

Selection  of  best  attribute  at  each  stage 

 In order to select the  best  relevant  attribute  for  each  node of the tree, an entropy function (as 

defined below) is considered.  

    

  i2

1

i plogp)(SEntropy 



c

i

SH

,  where S  represents the number of  currently considered 

learning  examples  and  pi  is  the non-zero probability  of  the examples (say Si in S ) belonging  to 

class  i , out of  c  classes.  

  It may be noted that C4.5 consists of mainly three phases: tree construction (C4.5u), tree pruning 

(C4.5p)  and  rule induction (C4.5r). Obviously, each phase operates at distinct level.   

Finally, the C4.5r  algorithm results the pruned tree obtained from C4.5p,   and each path from the 

root to a leaf of the tree yields a prospective decision rule representing in simple: If (conditions)–Then 

(decision class) like form. For better understanding the decision tree, one may refer Appendix- A. 

Decision tree and classification task 

Decision tree classifiers have been widely used to represent predictive models, due to its 

comprehensible nature that resembles the human reasoning.  In this respect, one may refer some 

standard studies[30,31,40-44]. Notably, DT-based classifiers have gained much importance in 

prediction of diseases. In 2003, Stasis  et  al. proposed a decision support system for heart sound 

diagnosis using C4.5 learner[45]. D.E. Brown introduced the data mining as medical informatics by 

applying a classification tree on Pima Indians dataset [46]. In 2003, Azar and EI-Metwally presented a 

decision support tool for investigating the breast cancer using three types of decision trees[28]. For 

more, one may refer the recent study[64]. 

    The short review presented above says that DT-based classifier is applied not only for artificial 

domain datasets but also for medical datasets at the present date.  

2.2  PRISM: A sequential covering rule inducing algorithm  

Sequential covering is also an 'IF-THEN' rule mining approach. Here, the 'IF-THEN' rules are 

extracted directly from the training data without constructing a decision tree. In particular, the rules 

are learned sequentially, i.e., one rule at a time. Each time a rule is learned, the tuples covered by the 

rules are removed, and the process repeats on the remaining tuples. More specifically, rules are 

learned for one class at a time. Actually, while learning a rule for a class, say ‘c’, it would like to 

cover the training tuples of class ‘c’ but none of the tuples from other classes. In this way, the learned 

rules must have high accuracy but the rules need not necessarily be of high coverage. The reason is 
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that, there may have multiple rules for a class, and different rules may cover different tuples for the 

same class. The process continues until the terminating condition such as when there are no more 

training tuples to learn, reaches. A high-level description of the approach is given below (in the box). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
One may note that there exist various versions of PRISM algorithm, e.g.,  RIPPER [10] that reduces 

the size of rules using pruning. However, RIPPER may lead to loss of knowledge, as it employs 

excessive pruning to reduce the size of the classifier.  Another version namely  N-PRISM 

algorithm[47] is proposed to resolve the problem of noisy data, whereas J-Pruning[48] employs pre-

pruning strategy. In 2008, Stahl and Barmer introduced Parallel PRISM(P-PRISM)[49] method to 

overcome PRISM’s excessive computational process of testing the entire population of data attribute 

inside the training dataset.   

   It may be noted that very little academic research has been found in medical domain using PRISM 

and its successors.  For a review in this respect, one may refer the study[63]. 

2.3 The  IF-THEN  rules  and  the  Interface 

This  section contains a short description of the rule-representation scheme to  deal the  suggested 

hybrid  model more conveniently. The representation is, indeed, internally used by the model to 

PRSIM  rule induction algorithm 

for  each  class  ‘c’  do  

    begin 

Initialize  examples (E)  to the training set (T). 

temp-dataset = T 

   while  T  contains examples of  class  ci  do 

       begin 

 Create a rule  r  with an empty left-hand side (LHS)  that predicts class  c, i.e.,     r:= {  }  c 

      If   r   is  not  perfect, then  do  the followings: 

                 begin 

     for   each attribute:   A   not  mentioned in  r , and  each value  v  do 

 Consider  the following  to add   the  condition   A = v  to  the   LHS  of  r. 

 Select A and v to maximize the  accuracy: a =  p/t  in the current  temp-dataset, where   

p=number of instances in  temp-dataset  belonging to the class (ci) by A=v and  t= number of 

instances in  temp-dataset  covered  by A=v   irrespective to any class. 

                                   (break ties by choosing the condition with the largest  p) 

 Add  A=v to  r   

                             endfor 

 Remove the instances (say  t  instances) covered by r  from T,  i.e.,  T=T- t and update the 

temp-dataset  consisting of the present content of T (removing the earlier contents of temp-

dataset). 

                         endwhile 

                    endfor 

     Note:  For better understanding the approach, one may refer Appendix-B. 
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perform the specific tasks such as computing accuracy, resolving conflict rules, finding accurate 

rules, etc., i.e., it may be hidden to the users (practitioners). In particular, the scheme is applied over 

the rules generated by the pure C4.5 and PRISM classifiers.  

     In  general, the knowledge  induced by most of the  supervised  learning  algorithms  is represented 

by decision rules of the form: IF (conditions) THEN (decision class), where  conditions (also termed 

as  pre-conditions) in each rule  are conjunctions of  elementary  tests on values of attributes, and 

decision  part  indicates the assignment of  an  object to  a given  decision class. In fact, each 'IF-

THEN' rule can be viewed as: antecedent→consequent, where antecedent part consists of conjuncts 

(i.e., pre-conditions or in short conditions) and  consequent  is  the  decision (i.e., action). Certainly, 

the left hand side (LHS) of a rule (i.e., antecedent) does not necessarily contain all the non-target 

attributes. It may be noted that such 'IF-THEN' rules  are  one  of  the  most  popular  types  of  

knowledge  representations used in  practice. The main reason behind the  wide  application of such 

rules is the expressive and easy human-readable representation[2]. 

     Recall that the rules produced by both C4.5 and PRISM methods  are close to 'IF –THEN' form. 

Their  formats  are shown respectively in Appendix-A  and Appendix-B  taking  a tiny dataset of the 

golf-playing problem. Unfortunately, 'IF- THEN'  rules  are  not easy to interpret by the system while 

finding the necessary tasks such as computing accuracy, resolving conflict rules, finding accurate 

rules, etc. So, to overcome the interpretability issue with respect to system, tabular like representation 

of the rules is preferred here. It is interesting to notice that the sequence of attribute-names placed at 

the columns of tabular-like representation must follow the sequence of attributes of original the 

dataset.  In particular, the last column always represents the target attribute. However, if a data set 

contains target attribute at its first column, then necessary transformation is made before passing it to 

the learner. 

     The Interface[60] adopted in the present study provides tabular representation of rules (as shown in 

Appendix-C), removing 'IF’ and ‘THEN' parts (clauses) from those. More specifically, the  values  of  

the attributes are listed below the names of  the respective  attributes (representing the columns of  

tabular structure). For each rule, the  interface  places ‘*’ (don’t care ) symbols  for non-target 

attributes whose  pre-conditions  are  absent  in that  rule. Thus,  the  attribute  corresponding to  the  

position of symbol: ‘*’ in a rule simply  implies  that  the attribute  has  no  importance  in  that  rule  

itself.  Truly speaking, all the non-target attributes irrespective to  their  presence or absence in rule(s) 

are  herein strictly considered in rule(s) with a view to simpler access.  

2.4  Classifier’s  performance measuring metrics 

Performance of  any classification algorithm  needs to be  tested  with  some metrics in order to  

assess  the  result  and  hence  the  quality  of  the  algorithm. In the present research, to evaluate the 

effectiveness of the suggested model over the medical datasets, performance metrics such as 
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accuracy, sensitivity (true positive rate) and false positive rate are computed. These are defined 

below. 

i) Accuracy:  For measuring  accuracy performance  of a classifier, the well-accepted formula (as 

given in equ.(2.1)) is adopted here.  

      (2.1)  ----- ------          100   x  
n

   m
   (acc.) Accuracy   , where m denotes the number of 

correctly classified test examples (i.e., unseen data) and  n  is the  total  number of test examples. This 

is, indeed, the  average  accuracy (%) measure of the learner, and it also can be computed as: 

                                                  
100





NP

TNTP

  

  Here, P and  N denote respectively the numbers of  positive and the  negative examples present in the 

test set, whereas  TP and TN  refer  respectively the  numbers of  predicted true positive and true 

negative examples. Literally, the terms -TP, TN, FP, FN  have the following meanings:   

 True positive(TP):    case  is  positive  and predicted  as positive. 

 True negative (TN):  case  is negative  and  predicted as negative.  

 False positive (FP):   case  is  negative  but   predicted  as positive. 

 False negative (FN):  case  is positive  but  predicted  as negative. 

Now, based upon equ.(2.1),  the error-rate (e%)  of any classifier can be computed as:  

                                                   e = (100 – acc.).        

Generally speaking, accuracy measure reports the overall exactness statistic of a classifier. Hence, 

error-rate (e) gives an overall estimation of errors. Further, precision (another metric) defined as:   

                                   
(2.2)  ----- ------           

FPTP

   TP
  Precision 




            

 emphasises on the exactness measure of instances of a particular class. This class  is known as 

positive class, and it is, indeed, a class of user interest.  Conceptually, these two metrics (accuracy 

and precision) are closely related to each other, since both of them emphasize on correct classification 

of cases. That is why, interest is not separately shown here on precision, rather attention is paid on 

another two useful metrics, viz.,  true positive rate (TPR i.e., sensitivity)  and false positive rate (FPR) 

assuming the presence of disease as the  true positive  case (e.g., Sick people correctly identified as 

sick) and the cases belonging to the rest categories together  are treated as negative cases.  Now, the 

questions are: 

 Why the rest examples  are put into  negative category?  

 Why the present study focuses on measuring TPR and FPR? 

  The answer to the first question is that  most of the  chosen problems are multi-category problem 

(i.e., not a binary class problem). For this reason, one class is treated as the positive class and the rest 

are grouped into negative class. Next, the second query is defended as follows:  
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      The datasets belong to medical domain, and  identifying the disease-affected person correctly 

must be of  much importance in this aspect. Simultaneously, any instance (i.e., case) under negative 

category should not be treated as positive to increase unnecessary  mental worry among the persons. 

With these  points in mind, attention is paid on computing the useful metrics-  true positive rate  and 

false positive rate  of the model. These two are defined below.                 

ii) True positive rate (Sensitivity) :  This measure finds the proportion of  positive cases that are 

correctly identified,  and so   it  is expressed as: 

                                                                         
)3.2.......(..........

P

TP
TPR 

 

iii)  False positive rate: It is the proportion of  negative cases that are incorrectly identified positive. It 

is formulated as: 

                                                                       )4.2.......(..........
N

FP
FPR   

2.5.  Discussion on the  selected datasets and their pre-processing 

Datasets 

Recall that the  datasets in the present study are collected from UCI (University of California at 

Irvine), a machine learning repository[50]. They all belong to real world medical domain. Their 

features  are  summarized  in Table 2.1. The problem names  are  arranged in alphabetical order in the 

table.  The  first four columns in the table say  respectively  problem name (i.e., name of the dataset), 

non-target attributes, number of classes  and number of  instances. On the other hand, the last  three 

columns show the class  imbalance behaviour of the datasets. More specifically,  the last two  

columns report the  percentage of  minority and  majority  class  instances of each dataset. Note that  

the  imbalance ratio of each dataset (placed at the 3
rd

 last column in the table)  is computed by the 

formula introduced by Tanwani and Farooq [51]. The formula is once again given here in equ.(2.5).

    

)5.2.(..........
II

I

N

1N
)ratio(I Imbalance

cN

1i in

i

c

c

R 
 


 ,  where  Ii  denotes  the number of  instances  

of  i
th
 class, whereas  In  represents the total  number of instances. On the other hand, Nc  stands for the 

number of classes present in the dataset. The value of IR (imbalance ratio) lies in the range:1 ≤ IR < ∞,  

where  IR = 1 implies that  the  dataset  is completely balanced having equal  instances of all classes. 
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Table-2.1:   Summary  of   the  selected UCI  Datasets (original) 

Problem name Number 

of 

 non-

target 

attributes 

Missing 

Value 

presence 

Number 

of 

classes 

Number 

of 

examples 

Imbalance 

ratio(IR) 

Minority 

class % 

with 

minimum 

instances 

Majority 

class % 

with 

majority 

instances 

Breast Cancer 

Wisconsin 

10 Yes 2 699 1.2133 34.47 65.52 

Dermatology 34 Yes 6 366 1.0526 5.4 30.60 

Pima Indian 

Diabetes 

8 Yes 2 768 1.2008 34.89 65.11 

Ecoli 8 No 8 336 1.2495 0.5 42.55 

Heart 

(Hungarian) 

13 Yes 5 294 1.7389 5.1 63.94 

Heart  (Swiss) 13 Yes 5 123 1.1409 4.06 39.02 

Heart 

(Cleveland) 

13 Yes 5 303 1.3693 4.29 54.12 

Hepatitis 19 Yes 2 155 2.051 20.64 79.35 

Liver Disorder 6 No 2 345 1.0522 42.02 57.98 

Lung Cancer 56 Yes 3 32 1.02 28.12 40.62 

Lymphography 18 No 4 148 1.46 1.35 54.72 

New-thyroid 5 Yes 3 215 1.7673 13.95 69.76 

Primary 

Tumor 

17 Yes 

(more) 

22 339 1.3334 0.5 24.77 

Sick 29 Yes 2 3772 7.6971 6.12 93.87 

 
Simply looking into Table-2.1, it is clear that all the selected datasets except Ecoli and  Liver-disorder 

have missing attribute values. One noticing point is that the Primary Tumor database has more 

number of missing values. Also, the datasets viz. Heart(Hung./Swiss/Cleveland), Hepatitis,  New-

thyroid, Sick  and Primary Tumor are imbalanced and accepted as uncertain in nature, whereas Sick 

database is highly imbalanced among these. Further, Lung Cancer and Sick are high-dimensional 

datasets. In particular, Sick dataset is comparatively voluminous. 

Data pre-processing 
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Recall that each dataset in this study is a medical classification problem (P). In reality, attributes of a 

dataset may contain mix-up of string, continuous, long- range or missing values. So,  it is essential to 

pre-process each dataset before passing it to any learner. In this purpose,  MIL data discretizer[52]  is 

employed here. The discretizer  emphasizes on preventing loss of information that may occur due to 

discrtization of data.  In addition, it  has  capability to  resolve  inconsistency issue of  instances 

present in the dataset as well as its occurrence during discretization process. In fact, the discretizer 

performs separately one extra step after discretiziation to tackle the issue. More specifically, it  

verifies each instance (I)  of a dataset with rest of the instances and keeps  one with majority class 

instance among the conflict class instances (if found) for I in the dataset. Simultaneously, the rest 

conflicting instances for the instance I are discarded from the dataset.  

      At this point, it is necessary to mention that  many classifiers  such as [9, 55, 56] cannot handle 

continuous attributes, whereas each of them can operate on discretized attributes. Furthermore, even if 

an algorithm can handle continuous attributes, its performance can be significantly improved by 

replacing  continuous attributes with its  discretized values[57-58]. The other advantages  in operating  

discretized  attributes are  the  need  of  less memory space  and less  processing  time  in comparison   

to their non-discretized form. Lastly, small number of rules are produced, while processing discretized  

attributes[7-9]. 

3.  The proposed hybrid model  

The basic requirements to construct any expert system are: (i) the training set (i.e., past experience),   

(ii) learner that results knowledge from training set and (iii) finally test set to assess the performance 

of the system. Technically, both the  training and the test sets are constructed from original dataset. It 

is important to note here that training set plays a vital role in designing expert system. In the purpose 

of constructing better training set, appropriate data-partitioning  is the essential solution. In Section-

3.1., a new partitioning scheme followed in the present research is discussed. 

3.1 Proposed data splitting scheme: construction of optimal proportion for training and test sets 

As noted, for building any intelligent system, each dataset (D) is split  into two distinct parts, say T1 

(training set) and  T2 (test  set) using  any  splitting approach. The training set  is used to train the 

learner(s), whereas the test set is used to evaluate the performance of the learned model.    There are 

several ways for partitioning  data. The two well-accepted methods namely hold-out and  k-fold cross 

validation are briefly explained below.  

    In hold-out approach, the proportion of data reserved for training and testing is typically at the 

discretion of the analysts (e.g., 50-50 or two-thirds for training and one-third for testing). On the other 

hand, k-fold cross validation technique  takes a set of m examples and partitions them into k sub-sets 

(folds), each of size m/k. For each fold fi, (i=1,.. , k) , a classifier is trained on a set combining other 

folds (fj, j=1, .., k and i≠j) and then tested on the fold, fi.  The trained accuracies are averaged over all 

k results. Such a strategy may be run a specific number of iterations, and a standard deviation is 
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recorded to estimate the reliability of the classifier. In fact, the  particular combined (k-1) folds which 

results maximum accuracy performance in comparison  to the other combinations, may  be treated as 

the best training set for the dataset. 

  However, the following limitations are identified  for the above mentioned  approaches. 

i) More training examples normally cause biasness of the model over training set only.  

ii) The estimated accuracy computed from the smaller test set is less reliable for prediction. 

iii) In practice, there is no choice of class distribution (i.e., the percentage of examples of 

classes) among the examples in the training set. 

So, deciding the best proportion to construct any intelligent model is a challenging task in data 

mining. More explicitly, what proportion of training and test sets is to be chosen in training and test 

sets for constructing  effective model? 

   In this respect, Sarkar [59]  performs  an investigation  addressing  the question of what proportion 

of the samples should be devoted to the training set for developing a better classification model. The 

study suggests that any equi-class distribution data partition with less amount of training data (usually 

(30%, 70%)  to (40%, 60%))  may be treated reasonably good for building a classification model 

irrespective to domain, size and class imbalanced, since  such a partition gives usually better accuracy 

over test set  resulting less number of informative rules in comparison to other partitions. One may 

here note that x%  and  y%  in  (x%, y%) denote respectively the percentages of training set and the 

test set, where x + y=100. However, one may apparently claim that less amount of training data is not 

significant  enough for building classification model, assuming that less amount of training examples 

carries less information. But this claim may not be correct in case of imbalanced dataset. To justify it, 

we  may take the concept  of information theory where the amount of information (entropy) for  an 

ensemble with multiple outcomes (e.g., X= {x1, x2, ..xn})  is  measured as:  

      )(log)()(
1

i

n

i

i xpxpXH 


 . Here, p(xi) denotes the probability of occurring event xi .        

Mathematically, H(X) (i.e., entropy) becomes maximum if each of xi has uniform probability. 

However, chances of occurring uniform probability in dataset (especially in imbalanced dataset) is 

practically very less. But for multi-class problem, it may be mathematically observed that if less 

percentage of equi-class distribution is taken in training set, then amount of entropy value reaches 

reasonably better.   

     Keeping the above view in mind, the present study primarily supports equi-class distribution data-

partitioning scheme with less percentage of training data. Although, there exists scope of research to 

decide an optimal proportion of training and test sets for each dataset, and the present study makes use 

of parallel computing to identify the optimal proportion, starting a proportion closer to (25%, 75%). It 

is detailed below. First, the idea on  equi-class distribution data partitioning is explained below  

before discussing the parallel approach. 
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Equi-class distribution of instances 

 Suppose that 30% examples  of  each  class  from  a dataset (D)  are  to be  randomly included 

into training set (TTrain). Assume that there  are  3 class  values (say  c1, c2 and c3)  and  150 

examples  in total in  D,  and  the  numbers  of  examples  of  class- types:  c1,  c2  and  c3   are  

respectively, say 33,  42  and 75. Then  10, 15  and 23 examples of class- types: c1, c2  and c3 

(based on the concept of ceil function, e.g.,   
  109.9

100

990

100

3033

















  ) are included into 

Ttrain by random  selection over D. Conceptually, this strategy  is known  as  sampling  without 

replacement because the examples which are selected for TTrain are immediately removed from D. 

3.1.1 Use of parallel processing to find optimal proportion  

From the viewpoint of knowledge discovery, deciding an optimal proportion (i.e., how much training 

data is sufficient) is  a key issue in data mining, as it varies from problem to problem. Precisely, 

tackling the issue needs  lot amount of  time, as it comes under combinatorial problem.  Further, in 

medical domain, any pre-decided  amount  of training data for any dataset may not necessarily be the 

best one, as new significant changing occurrences may be included in the database. That is why, the  

essence of parallel processing is employed here to resolve this issue. More specifically, interest is 

shown to identify an  optimal or near optimal proportion for training and test sets for each  dataset  by 

creating  number of threads (or processes), where each thread/process operates on the same dataset 

but for a distinct partition (e.g., (25% , 75%) by thread-0,  (26%, 74%) by thread-1, and so on  up to 

(40%, 60%)). In fact,  the partitions are  to be obtained parallelly as the outputs of  a procedure named 

DATA-SPLITTER ( ) running in different threads/processes. Next, each pair: (training set and test 

set) is  to be passed to PRISM classifier that also will be run by  individual thread/process. Finally, an 

optimal pair (i.e., proportion, say (m%, n%)) is to be identified based on the accuracy results 

computed over the test sets.  Algorithmically, the  code  corresponding to the above discussed parallel 

logic  is outlined below. Actually, three procedures namely DATA-SPLITTER( ), PRISM( ) and 

ACCURACY( ) are used in sequence to fulfil this job. More specifically, the procedure DATA-

SPLITTER( ) is parallelized  to operate different instances. It is parallelized, since the concept of 

random number generation is used in the procedure: DATA-SPLITTER( ) to chose instances in 

training set  and the parallel m/c’s have high probability to variate the random numbers in the same 

run as well as different runs. 
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 Why PRISM learner is used for selecting the optimal proportion? 

Recall that the medical datasets are imbalanced (i.e., rare case) and the PRISM algorithm can 

tackle  rare case  issue to a great extent, as it separately concentrates instances of each class. So, 

consideration of  PRISM  learner may be the best treatment for identifying an optimal proportion. 

3.2 The exact hybrid model  

To build the exact model, each  dataset (D)  is  here first split into three sub-sets namely T1, T2 and T3,  

as follows. 

 T1 : This set is, indeed, the training set  based on optimal proportion (containing (m%, n%) 

examples of each class) and it is  found by adopting the strategy as discussed in Section-3.1.1.  

 T2 :  15% examples  of  each  class  are  selected  at random from (D-T1) and included into T2. 

Simultaneously, these examples are removed  from (D-T1).   

Parallelized code for finding an optimal proportion:(training set, test set) 

for   all  pi   (i=0, … (n-1))  do  parallel  

      begin 

  call DATA-SPLITTER(s+pi * di)    /* The call results  a distinct training set say Etrain  (local copy to pi). 

The splitter uses random number generation function used in the language (in which it is implemented) to 

pick up examples at random from data file. Special care must be taken to maintain the variation in the 

examples from training set to training set generated by the threads or processes.  

 variable: s takes a fixed value (i.e., the starting percentage)  for resulting the training set, whereas  the 

variable d  takes a fixed difference value. Thus, the  expression: s+pi*d,  gives the exact percentage of 

training examples to be included into the training set (Etrain)  to be resulted by thread-id: pi. Surely, the 

splitter is responsible for including: (s+pi*d)  percentage of   instances of each class  in Etrain  resulted by 

each thread /process, whereas (100- (s+pi *d))  for the corresponding test set. */ 

    call PRISM(Etrain)     //  This call results  a distinct rule set R (local copy to pi) for Etrain . 

    call ACCURACY(R,  Etest)  

 /* The ACCURACY( ) procedure finds prediction measure (local) over Etest (test set corresponding to the 

training set Etrain) by applying the rule set R. */ 

       end 

 Last step of  the  parallel strategy for finding optimal proportion 

 After computing accuracy result (a local result: lc) over the respective test set by individual  thread/process, 

an optimal proportion (say,  (m%, n%)) is returned by comparing lc  with  a  global-accuracy (say, gc) via 

mutual exclusion scheme (in case of shared-memory model environment) or  message passing scheme (in 

case of distributed memory model environment). To be more specific, as  soon as a better accuracy result 

(achieved by an individual thread/process) is found, the corresponding training set and the test set are 

captured. This process continues until all the threads/processes finish such an adopted scheme. Finally, the 

best proportion is identified. 
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  T3 : It  is  now  D –(T1+T2).  

The proposed  hybrid architecture is constructed by integrating two individual classifiers viz. C4.5 

and PRISM. The model consists of three phases, and it is depicted in Figure-3.1. 

 

            Fig-3.1:  Hybrid model consisting of three phases 

Let D be a dataset with ‘c’ classes, and T1, T2 and T3 are its partitions obtained by applying the 

suggested partitioning scheme (as discussed above). The three rule sets: R1, R2 and Rbest (as shown in 

Figure-3.1) are explained below. 

 R1 :  rule set generated by C4.5 classifier and I(R1) represents its tabular format (applying 

interface[60]). 

 R2 :  rule set generated by PRISM  classifier and I(R2) represents its tabular format. 

 Rbest : )(
1




c

i

inbest , where ni = 






 

2

ii CC NM
. Here, 

iCM and 
iCN represent the numbers of  

i-th class rules  present in  rule sets: R1  and  R2 respectively. 

Now, each phase  of the hybrid approach is  detailed below. 

Algorithmic version of the proposed model 

Phase-I :   The selected  two learners- C4.5 and PRISM  are  separately trained over T1.  Suppose  

they generate rule  sets, say   R1  and  R2. 

Phase-II :   Apply the  Interface s/w [60] to obtain the formatted tabular  structure of  R1 and  R2  

(denoted as I(R1) and I(R2)).  

 Next, find the number of rules of each class (out of ‘c’ classes) in I(R1) and I(R2). These are,   

    denoted as 
iCM and  

iCN
 (i=1, ..c).

 

Phase-III: The formatted rule sets: I(R1) and I(R2) are merged to result R (i.e., R=I(R1)U I(R2)) and an 

attempt is made to derive  high quality rule set (say Rbest) from R by applying  the following  steps. 

           Initialize  Rbest =Ф             // Ф  denotes empty set. 
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Step-1: Remove the default rule (as explained in Appendix-C) from R requiring the demand of 

accurate rule in context of CDSS. 

/* Steps-2 and 3 are  the pre-processing steps for constructing a refined rule set.  In fact, due to 

merging of two rule sets (each derived from one distinct learner), some rules in R may be redundant 

and/or conflict,  and  these two steps take care of this part.  */ 

                                         /*   Removing redundant rules */ 

Step-2: Remove the redundant rules from R, i.e., R=R- Rred, where Rred is a set of redundant rules 

found by applying the strategy suggested in Section-3.2.1 (i) and  (ii).    

      Rtemp  Ф  //  Rtemp: a file to store temporarily some rules of  R. 

 
                                              /*   Removing conflict rules   */ 

Step-3:  for  each unprocessed rule:  ri ϵ  R  do 

                begin 

  Step-3.1  Identify the conflict  rules for ri   in R (if any) by applying the strategy explained in  

        Section-3.2.1 (iii)  and dump them (including ri )  in the set: Rtemp. and  finally perform:  

                                                 R=R- Rtemp. 

    Step-3.2  for each rule rj  in  Rtemp  do 

        begin 

          Step-3.2.1 Compute the correct classification rate of rj  on T2 by applying the formula:  

          )1.3.....()(
2T

m
rf j  , where m denotes the number of correctly classified examples 

            in  T2  by  rj   and  |T2|  gives total number of examples present in T2 . 

        endfor  // for Step-3.2 

 Step-3.3.  Include the best rule (say rbest) of Rtemp into R, i.e., R= RU{rbest} 

 Step-3.4    Rtemp  Ф        

       endfor  // for Step-3 

                                            /*     Finding    Rbest      */ 

Step-4: Measure the performance of each rule(r) in the current set: R on T2 using: 

   2.3.....   
kn  

m
rf


  , where m  and n represent respectively the numbers of training examples 

correctly  and  incorrectly classified by r over T2.  Also, k  denotes the number of pre-conditions 

present in rule  r.  

/* The equ.(3.2) plays an important role to resolve collision occurred  among the rules of same class  

in R and it  assists to chose the high quality rules  with less number of pre-conditions .*/ 

Step-5:  Arrange the rules of R class-wise  in descending order of their performance  over  T2.   
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Step-6: Choose the first  ni  rules of  each class ‘i’ (i=1, 2, .., c)  (as the best rules; assuming that 

sufficient rules are present in R)  from   R  and include those  into Rbest. 

 

                /* The value of ni  is initially decided and shown earlier. */ 

Step-7: Apply Rbest on T3  to  get  its accuracy percentage (by applying equ.(2.1) given in Section-2.4). 

 
3.2.1  Strategy  to  identify  distinct  and  identical (i.e., sub/super) rules 

To  understand  the  idea on  distinct  rule, identical  rule  and  conflict  rule, let us take  a  discretized 

dataset of a  classification problem (P) with 4 non-target attributes, say  A1, A2, A3 and A4  and class 

(i.e., target) attribute, say C. 

i. Identifying distinct  rules: 

Two rules: r1  and  r2 are distinct if  min (|pre(r1)|, |pre(r2)|) ≠ match(pre(r1), pre(r2)), where |pre(r)|  

results the number of pre-conditions (each with a numerical value) present in rule: r and  the function: 

min(m1, m2) returns the minimum between two numbers: m1, m2.  Further, the function: match( ) 

returns the number of  pre-conditions matched between two selected rules. 

Illustration:   Let  r1 and  r2  be  two  rules  for  P  as follows:     

 r1:   If  (A1=4) and (A2= 2)  and  (A3=1), then  C=1     

 r2:   If  (A1=4) and (A2= 2)  and  (A4=2), then  C=1  

Clearly, each of r1 and r2 has 3 pre-conditions because each of these pre-conditions has numeric value 

(e.g., A1=4, A2=2 and so on).  However,  r1  and  r2   are  not  identical  to each  other because  the  

third  (from  left)  pre-conditions of   r1  and r2  are  not  same (i.e., these  are respectively (A3=1)  and  

(A4=2) ),  although  their  first  two  pre-conditions  match exactly.  Obviously, the number of matched  

pre-conditions  between  r1  and  r2  is  here 2, and it  is  not equal to min (|pre(r1)|, |pre(r2)|)= 

min(3,3)=3, i.e.,  min(3,3)≠match(pre(r1), pre(r2))=2. Hence, both r1  and r2  are  here  distinct. This 

implies that an instance belongs to class C=1 if its attributes’ values are as follows: 

(a)  (A1=4) and (A2= 2)     and  (b)  either (A3=1)  or   (A4=2) .  

Certainly, the above two conditions may be parsed by two distinct rules. 

ii. Identical  rules and redundant rules 

Two rules r1 and r2 are identical if  min (|pre(r1)|, |pre(r2)|) = match(pre(r1), pre(r2)). 

Let  r1 and  r2   be  two  rules for  P  as follows:     

 r1:   If (A1=4) and (A2= 2)  and  (A4=1), then  C=1     

 r2:   If (A1=4)  and  (A4=1), then  C =1  

The number of pre-conditions  present in  r1  is  3, whereas it is 2 in r2. In fact, the rules  match  at  two  

places except for (A2=2) of  r1. Clearly, the number of  matched  pre-conditions (m) is here 2 (i.e.,              

m =2).  Again,  min (|pre(r1)|, |pre(r2)|)= min(3,2) returns 2,   and it  equals  to  m.    
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    Hence, both  the  rules  are identical  but one  supersedes  the  other. In other words, out of these 

two rules, one is  the super rule of the other. Obviously,  |pre(r2)| =2 , and  it is less than |pre(r1)|=3. 

So,  rule  r2  is here treated as  the super rule of  r1, and  r2 (instead  of  r1)  is  well-expected to be 

present in  rule set with  the aim  to classify more test examples. Definitely, r1 is redundant, and it is 

to be removed from rule set R.   

iii. Identifying conflict  rules      

Two rules are termed as conflict rules if their  antecedent parts  are  identical  but consequent parts 

(i.e., class values) are different. For better realization, let  r1 and  r2 be two rules of P  as:     

 r1:   If (A1=4) and (A2= 2)  and  (A4=1), then  C=1     

  r2:   If (A1=4) and (A2= 2)  and  (A4=1), then  C=2 

Certainly, these two rules are the  example of conflict rules, since their antecedent parts are same but 

class values  are different (i.e., these are  C=1  and  C=2 respectively). 

4. Experimental results  and discussion 

This section first discusses about the experiment conducted in the present study. Next,  the obtained 

experimental results are arranged in tables. Finally, the results are analysed. For carrying out the 

experiment, the necessary materials are either  downloaded or implemented in C language. For 

example, the classifier C4.5[2] is a downloaded s/w, whereas the PRISM algorithm (presented in 

Section-2.2), the interface[60], the proposed data-splitting procedure: DATA-SPLITTER( ) and the 

suggested hybrid method (discussed in Section-3.2) including the performance measuring programs 

are all implemented in C. Further, the DATA-SPILTTER() (for deciding an optimal proportion) is 

parallelized using OpenMP (Open Multi-Processing: an application programming interface that 

supports multi-platform shared memory multi-processing programming in C)  on Cluster HPC 

machine(FUJITSU) with a total 256 cores (under one Master node). The Master node has 64GB main 

memory with 2 HDD, each of size 1TB, Speed-2.4GHz. The supporting operating system in the said 

HPC machine is the CentOs-6.2 with GNU/Linux Kernel. All the programs run in same machine.  

4.1 Experiment  and results  

The performance of the proposed hybrid  model (DTPR) and its base learners is experimented on 14 

real-world medical datasets drawn from UCI repository[50]. 

    Before conducting experiment over each dataset by the introduced hybrid model, one pre-

experiment for identifying the optimal proportion of  training and test sets for each data set is carried 

out by employing the suggested parallelized approach on the said HPC machine.  From pre-

experiment point of view, the parameters  for DATA-SPLITTER(s+pi * di)  are set  as follows: 

  s (i.e., the starting   percentage) = 25,  d (the fixed difference value)  = 1. 
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  Total number of employed threads=35, i.e., 0≤ pi  ≤35, where pi (i =0, 1, …34) denotes thread-

id, and  ids’ are usually numbered as 0, 1, .. 

For illustrating the parameter: s+pi*di, we may first take, p0 =0 (i=0), then s+p0*d=25; likewise,  for                

p1 =1 (i=1), s+p1*d=25+1=26,  and so on.     

Why  thirty  five threads  are  considered? 

Based on the illustration of  s+pi*di, it is clear that unit interval in proportion is  allocated between  

two consecutive threads. As per this calculation, total 35 threads are sufficient to reach the 

proportion (60%, 40%) starting from (25%, 75%). The partition: (60%, 40%) is considered here as 

the maximum limit for building classification system, since beyond this measure any developed 

system may result better performance on training data but not on unseen data, i.e., chance of 

biasness of the system increases on training data.   

For validating the optimal proportion (for each case), the suggested parallelized approach is repeated 

10 times. Finally, the mean of 10 results along with standard deviation (s.d.) value  is  reported in the 

box below. 

  

 

 

    

 

 

The standard deviation values displayed with mean proportion values infer that proportion value  

does not vary much from their mean values at different runs. That is why, mean proportion for each 

dataset is considered as the standard proportion in the present study. 

Experiment (e)  over each dataset 

 Experiment(e) for each problem consists of two sub-experiments denoted as: e1 and e2.  Both  e1 and 

e2  are detailed below. 

Sub-experiment(e1): At each run of this part, three distinct sub-sets of  each dataset (D), viz.T1, T2 

and T3 are first constructed by applying the suggested data-splitting approach (as discussed in 

Section-3.1). It may be noted that the percentage of training examples in T1 for each dataset is 

specified in the above box. As the training percentage in T1 is known, so we may easily find the 

percentage of examples in T2 and finally in T3.  

    Now, the implemented hybrid  approach is run in sequence  on T1 and T2 respectively to train 

and to refine the model. More explicitly, T1 is separately passed to the base learners: C4.5 and 

PRISM to generate two rule sets- R1 and R2. These two are first merged and then refined by the 

suggested model.  Finally, the refined model is tested on T3 to get  the accuracy performance (as 

per the formula given in equ.(2.1)) for each dataset.  

Breast-cancer: (45%, 55%) 2.13%,   Dermatology: (55%, 45%)  2.61%,   Pima-Indian: (56%, 44%) 1.6%,    

Ecoli: (45%, 55%) 0.9%, Heart(Hung.): (48%, 52%)  1.7%, Heart(Swiss): (35%, 65%)  1.13%,  

Heart(Clev.): (45%, 55%) 2.96%,  Hepatitis: (48%, 52%) 3.11%, Liver-disorder: (54%, 56%) 1.11%, 

Lung-cancer:(60%, 40%)  1.34%, Lymphography:(50%,50%)  1.02%, New-Thyroid: (42%, 58%) 1.63%, 

Primary-Tumour: (48%, 52%)  1.45%,  Sick: (38%, 62%) 1.36% 
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Sub-experiment(e2): Here, each of  C4.5 and PRISM is first trained on (T1 + T2). Then, the trained 

models are separately run on the test set: T3 to obtain  the accuracy performances  for the dataset.  

Logic for reliable estimation 

For better estimation of the accuracy performance of the learners, the processes followed in e1 and 

e2 are repeated 20 times for each dataset. Finally, mean classification result over 20 results and 

standard deviation for each  set are computed and reported in the performance Table-4.1 in favour 

of each learner. It is interesting to note that the size of training set in sub-experiment: e2  is larger 

than the size of training set used in e1.  

    In addition to accuracy result, TPR and FPR measures (as per equns(2.3)  and (2.4))  for each of the 

learners are also computed at each run and  finally the mean of 20 values at each case is noted  in 

Table-4.2. They are shown pair-wise as: (TPR, FPR). However, s.d.’s measures for TPR and FPR are 

reported for hybrid model only. 

Table 4.1: Accuracy results(%) of the classifiers based on the proposed data sampling approach 

over   the   selected  datasets 

Problem name C4.5 

)..( dsacc   

PRISM 

)..( dsacc   

DTPR 

)..( dsacc   

Breast Cancer 

Wisconsin 

93.36 2.45  (3) 93.95 3.54  (2) 96.25 1.86  (1) 

Dermatology 91.96 4.91 (2) 87.41  5.13 (3) 96.90 2.76  (1) 

Pima Indian 

Diabetes 

77.63 1.51 (2) 75.34 1.64 (3) 86.28 1.42 (1) 

Ecoli 83.23 1.37 (2) 74.91 3.77 (3) 86.27 1.28 (1) 

Heart 

(Hungarian) 

76.33 2.56 (3) 79.08 2.43 (2) 83.23  1.21 (1) 

Heart  (Swiss) 44.23 6.90 (3) 

 

46.29 5.32 (2) 52.81  3.45 (1) 

Heart 

(Cleveland) 
77.26 3.40 (3) 78.20 3.40 (2) 82.01 3.06 (1) 

Hepatitis 82.00 3.40 (2) 80.77 4.37 (3) 86.59 3.19 (1) 

Liver Disorder 80.17 7.80 (2) 78.34 6.24 (3) 88.01 4.06 (1) 

Lung Cancer 73.17 9.29 (2)   64.72  10.19 (3) 80.81 7.10 (1) 

Lymphography 76.98 7.18 (2) 72.74 7.74 (3) 84.68 7.01 (1) 

New-thyroid 91.33  4.18 (3) 91.96 3.85 (2) 97.86 1.74 (1) 

Primary Tumor 34.56 3.98 (3) 36.21 3.06 (2) 41.82 2.60 (1) 

Sick 97.72 0.45 (2) 97.02 0.56 (3) 98.28 0.51 (1) 

               Average-rank                 34/14=2.428            36/14 = 2.57                14/14=1 

Note  The value appearing just before ‘ ’  at each column indicates the mean accuracy 

(acc.), whereas the value  appearing after  ‘ ’ represents  standard deviation value (s.d.).  
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Based on the accuracy results displayed in Table-4.1, the rank value of individual learner is placed 

within parenthesis along with the accuracy result. The rank values are later used to carry out statistical 

test for significant inference of the learners. 

Table- 4.2:  True positive and false positive rates of the classifiers based on the proposed data 

sampling approach over   the   selected  datasets 

Problem name C4.5 

(TPR, FPR) 

PRISM 

(TPR, FPR) 

DTPR 

(TPR, FPR) 

Breast Cancer 

Wisconsin 

(0.821, 0.085) (0.824, 0.081) (0.921 0.003,  0.042 0.002) 

Dermatology (0.901, 0.045) (0.873, 0.050) (0.991 0.001,  0.031 0.002) 

Pima Indian Diabetes (0.874, 0.061) (0.805, 0.062) (0.901 0.004, 0.060 0.007) 

Ecoli (0.835,0.063) (0.721, 0.080) (0.885 0.007, 0.090 0.008) 

Heart (Hungarian) (0.811, 0.051) (0.820, 0.041) (0.989 0.0021, 0.060 0.006) 

Heart  (Swiss) (0.644, 0.071) (0.691, 0.063) (0.790 0.041, 0.091 0.010) 

Heart (Cleveland) (0.802, 0.054) (0.859, 0.052) (0.916 0.004, 0.079 0.006) 

Hepatitis (0.795, 0.073) (0.721, 0.074) (0.849 0.021, 0.051 0.008) 

Liver Disorder (0.801, 0.064) (0.743, 0.063) (0.905 0.003, 0.051 0.004) 

Lung Cancer (0.813, 0.067) (0.703, 0.101) (0.885 0.011, 0.058 0.007) 

Lymphography (0.806, 0.062) (0.729, 0.067) (0.905 0.006, 0.053 0.004) 

New-thyroid (0.843, 0.007) (0.861, 0.008) (0.998 0.001, 0.001 0.001) 

Primary Tumor (0.358, 0.19) (0.386,  0.16) (0.635 0.087,0.091 0.010) 

Sick (0.889, 0.047) (0.860, 0.049) (0.989 0.002, 0.042 0.003) 

 
4.2 Discussion on results  

Discussion among the selected learners 

On the basis of the empirical results over the UCI datasets, some important findings about  the chosen 

learners are listed below. 

 The head to head performance analysis of the learners (based on Table-4.1) infers that the 

pure C4.5 classifier performs better prediction over eight datasets, viz., Dermatology, 

Diabetes, Ecoli, Hepatitis, Liver-disorder, Lung-cancer, Lymphography and Sick, as 

compared to the individual learner PRISM. On the other hand, the table reveals that the 

performance of PRISM learner is comparatively good in comparison to C4.5 for some 
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datasets with rare cases. Examples include Breast-cancer, Heart(Hungerian), Heart(Swiss), 

Heart(Cleveland) and Primary Tumor.   

     However, it is worth noting that  the proposed ensemble model: DTPR outperforms its  

base algorithms over all the datasets.  In particular, it gains genuinely higher accuracy with 

low standard deviation over 12 datasets namely Breast-cancer, Diabetes, Ecoli, 

Heart(Cleveland), Heart(Swiss), Liver-disorder, Lung-cancer, Lymphography,  New-thyroid,  

Primary-tumor and  Sick, in comparison to the pure C4.5 and PRISM learners.  Further, the 

low standard deviation values attained by the model for the datasets affirm that the obtained 

accuracies are less scattered around the mean values. Accordingly, the introduced model is 

reliable for predicting unseen data.  

 Another  highlighting  point is that the defined  new  system is more likely successful to 

operate voluminous and high-dimensional datasets using the suggested data-splitting scheme 

(selecting usually less amount of training data).  Evidence  includes  Lung-cancer and  Sick  

data sets in the present study.  

 High mean TPR results  with low s.d.  values reveal that the proposed system has ability to 

detect accurately the disease-affected persons. On the other hand, the system also shows  less 

FPR results on the diseases which in turns avoid unnecessary mental worry among the 

persons reporting the presence of disease for diseaseless people. 

 The performance Table-4.1 indicates that the new model minimizes the error-rate, since 

classification accuracy increase in each case. 

Learning algorithms and Nemeny test 

Technically, comparing two or more algorithms based on their mean accuracies and standard 

deviations does not give always significant inference. That is why, two-tailed Nemenyi statistical 

test[53] is employed here in this purpose over the average ranks attained by the learners. For 

convenience, the  critical values  for  the two-tailed  Nemenyi  test  are furnished in  Table-4.3, 

referring the paper  published by Demsar [54]. Importantly, it is well-accepted that the performance of 

two classifiers is significantly different if the corresponding average ranks (achieved by two 

classifiers) differ by at least the critical difference(CD) which is defined as: 

   
 
6M

1kk
qCD


 

 …..(4.1), where k denotes the number of  learners; M, the number of  data 

sets; and  qα the critical value  based on the Studentized  range  statistics  divided  by  √2.  

   Note that the number of learners (k) in the present experiment is 3, and M is 14. Now, consulting 

Table-4.3, the value of CD for q0.05 is computed as 0.8863, whereas it is 0.7755 for q0.10. These values 

are used subsequently in this  section for significant assessment of  the  learners.  



26 

 

Table  4.3:      Critical  values  for  the  two-tailed  Nemenyi  test 

      #algorithms     2       3            4           5         6         7           8           9         10 

             q0.05       1.960   2.343   2.569   2.728   2.850   2.949   3.031   3.102   3.164 

             q0.10       1.645   2.052   2.291   2.459   2.589   2.693   2.780   2.855   2.920 

 

Significant assessment of the learners:       

The  average  rank of each learner is already computed and shown at the bottom of Table-4.2. Now, 

based on the values of average rank and CD, the following statistical inferences can be drawn for the 

learners used in this study. 

 The difference between the average-ranks of C4.5 and DTPR system is (2.428-1) =1.428. 

Clearly, this value is greater than both the values: 0.8863 and 0.7755. Therefore, the hybrid  

system is significantly better than the pure C4.5 at both q0.05 and q0.10.  

 The difference between the average-ranks of PRISM  and DTPR is (2.57-1)=1.57,  and this 

value is also greater than both 0.8863 and 0.7755. Hence, the suggested model is significantly 

better than the PRISM  for both  q0.05  and q0.10.  

Discussion with other state-of-art clinical systems 

Of greater interest, the performance of the present system is compared with some unique models 

(especially designed for particular diseases) and these are collected from the standard survey 

papers[64,75] listed in Science Citation Index (SCI). 

 Breast cancer data set: The DTPR system achieves 97.25% accuracy, whereas a hybrid 

model(GA+ANN)[66] developed by Bhardwaj and Tiwar results 97.24% accuracy by (50-50) 

training-testing partition. However, the main drawback of (GA+ANN) system  is that no 

explicit model (in understandable: ‘IF-THEN’ format) is delivered by the said system for 

medical practitioner. Also, the number of examples included in training set is around 5% 

more than that of DTPR model. 

 Hepatitis:  On this data set, the model: DTPR gives 86.59% accuracy, whereas SVM-SA 

method[67] produces astonished outcome: 96.25%  which is very promising with regard to 

the other classification methods in the literature for this problem. But here too, the main 

drawback is that the knowledge gained by SVM-SA  is implicit. 

 Heart disease(Hung. and Cleveland): The DTPR model achieves 83.23% and 82.01% 

accuracies separately over these two sets, whereas a GA-SVM hybrid model[68]  proposed by 

Xiaoyong Liu and Hui Fu shows 80% accuracy over the combined sets. Therefore, the 

accuracy result attained by DTPR is better than that of GA-SVM. 
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 Liver disorder: The DTPR framework exhibits 88.01% accuracy, whereas the framework 

proposed by Fan et al.[69] gives around 85% accuracy. However, from the survey paper[74], 

it has been observed that any ANN-based hybrid intelligent model especially designed for 

Liver disorder data set usually achieves 90% or above performance accuracy. But the main 

drawback of any ANN-based system is that explicit rules are not generated for assisting the 

practitioners. So,  the present system  would be more suitable if both the criteria (performance 

and interpretability) are taken together.  

 Lymphography: The present architecture yields 84.68% accuracy, whereas the hybrid 

technique: iNN(K)-L and CCBR introduced by McSherry[70] results 86.5% accuracy. This 

says that the presented generalized model is better than the specific one. 

 Pima Indian Diabetes: The DTPR model earns 86.28% accuracy, whereas the hybrid model 

(Case based reasoning and AI techniques) suggested by Marling et al.[71] attains 89.10% 

accuracy. This report infers that DTPR is not bad in comparison to the specialized one for 

diagnosing this disease.   

 Thyroid: The 97.86% accuracy result achieved by DTPR model is very closer to the result 

(99%) obtained by the hybrid model proposed by Prasad et al. [72]. 

The short comparison of DTPR with the specialized models infers that the presented generalized 

model competes parallel with the specialized models.  

5.  Conclusion and Future work 

Many predictive models for medical data mining have been introduced  in the past decades but they 

have  drawbacks like disease specificity of model and vagueness of patient’s data.   In this work, a 

novel generalised hybrid approach for diagnosing medical diseases is developed by combining C4.5 

and PRISM learners. On the basis of performance comparison  among the chosen classifiers in the 

present study and some specialised learners in the literature, the following remarks can be made in 

favour of  the hybrid DTPR model. 

 The decision rules refined and derived by DTPR are in easy understandable: IF-THEN form. 

 The presented approach works well for all the chosen medical datasets (i.e., it is not disease 

specific) and it can be a good alternative to the well-known machine learning methods. 

 The model achieves low standard deviation results computed over the datasets, that is, the 

achieved accuracy performance of the model does not vary uncertainly from run to run. 

Hence, it claims the reliability of the proposed hybrid approach for predicting unseen 

instances of  medical  datasets.   

 The high TPR values bagged by the introduced ensemble approach give assurance of resulting 

more accurate rules for predicting unseen instances, and it is highly desired in CDSS. 
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 It has high capability to manage rare case issue (due to the application of equi-distribution of 

instances of all classes in training set). 

 The defined new system is more likely successful to operate voluminous and high-

dimensional datasets using data-splitting scheme with small amount of training data. 

The present research has the following potential implications. 

  The model provides less number of accurate  and  explanatory ‘IF -THEN’ rules for each 

dataset. As a result, the domain user (i.e., practitioners) can easily detect  diseases in quick 

and more correct way in comparison to other models in the literature, and  can easily 

recommend proper medicine whenever required. Consequently, it claims  to save lives and 

cost to a great extent. 

Future scopes 

There are few aspects of this research that may be improved further or extended in nearest future. 

 Many data sets  such as Heart (Hung./Swiss/Cleveland), Hepatitis, Lung-cancer in the present 

study are small or very small in size. So, more data with variation can be collected from 

different hospitals for testing the generalizability of the proposed model. 

 The computation burden of the presented hybrid learning approach can be reduced by 

applying any feature screening approach on the original data sets. Accordingly, extracting 

excellent features of each database may assist the model to achieve better performance. 

 The hybrid model can be converted to a specialized model for specific clinical data set for 

improving accuracy using genetic algorithm (GA). In this regard, each  rule set refined by 

DTPR can be optimized by identifying appropriate fitness function for the specific data set. 

 It would be interesting if the proposed framework is applied over big medical data such as 

MIL-Leukemia with number of non-target attributes=12583, number of instances=72 and 

number of classes=3, collecting from site:  http://mldata.org/repository/data/viewslug/leukemia-mll/ 

6.  Executive summary 

 Medical datasets are imbalanced and uncertain in nature. 

 CDSSs  abate the cost of canonical treatments of diseases and save lives. Many CDSS’s have 

been developed in the literature for effective treatments of diseases.  

 Designing generalized accurate CDSS is a challenging task. The present research focuses to 

design a hybrid but generalized disease predictive model to handle any kind of disease 

datasets with better accuracy results.  

 The present research has the following  potential implications. 
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The model provides less number of accurate  and  explanatory 'IF -THEN' rules for each 

dataset. As a result, the domain user (i.e., practitioners) can easily detect heart disease in 

quick and more correct way in comparison to other models in the literature, and  can 

easily recommend proper medicine whenever required. Consequently, it claims to save 

lives and cost to a great extent.  

 In summary, the model attains capability to drop global burden of disease treatments.  
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APPENDIX- A   

Classification problem:  A classification problem (P) is described by a set of attributes categorized as: 

non-target (i.e., feature) attribute and class (also known as target) attribute. Each problem contains 

only one target attribute but many feature attributes.  

    For better understanding the classification problem,  let us consider the ‘golf -playing’  problem. 

The problem takes here four feature attributes  viz., Outlook, Temperature, Humidity and Windy. The 

target  is  named as Playing-decision.  The feature attributes  are denoted as respectively A1, A2, A3 

and A4, whereas C is used for the class attribute.   The possible non-discretized values of the attributes 

are noted below. 

   Name of attribute                         Values  

   Outlook (A1)                       Sunny, Overcast, Rain 
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   Humidity (A2)                     High, Normal 

   Temperature (A3)                Hot,  Mild, Cool 

   Windy (A4)                          Strong, Weak 

   Playing-decision ( C)                 No, Yes 

A non-discretized data set of 14 days observations for this problem is shown in Table-A.1. Here,               

Di  ( i=1,…14) represents day. 

 

                               Table A.1: A sample of  non-discretized ‘golf-playing’  data set 

Sl. No.                 Non-Target Attributes (Ai, i=1,…4) Playing-

decision Outlook (A1) Temperature(A2) Humidity (A3) Windy (A4) 

D 1                           Sunny                   Hot                          High                Strong                    No 

D2                            Sunny                   Hot                          High                Strong                    No 

D3                            Overcast               Hot                          High                 Weak                     Yes 

D4                            Rain                      Mild                        High                 Weak                     Yes 

D5                            Rain                      Cool                        Normal             Weak                     Yes 

D6                            Rain                      Cool                        Normal            Strong                     No 

D7                            Overcast               Cool                        Normal             Strong                    Yes 

D8                            Sunny                   Mild                        High                 Weak                       No 

D9                            Sunny                  Cool                         Normal            Weak                       Yes 

D10                          Rain                      Mild                        Normal             Weak                       Yes 

D11                          Sunny                   Mild                        Normal              Strong                     Yes 

D12                          Overcast               Mild                        High                 Strong                      Yes 

D13                          Overcast               Hot                          Normal             Weak                       Yes 

D14                          Rain                     Mild                         High                 Strong                       No 

  Followings are adopted as the discretized (mapping) values of the respective attributes. The 

discretized values are  shown within parentheses.  

     Name of attribute       Discrete values shown within parenthesis 

   Outlook (A1)                       Sunny (1), Overcast(2), Rain(3) 

   Humidity (A2)                     High (1), Normal (2) 

   Temperature (A3)               Hot (1),  Mild (2), Cool (3) 

   Windy (A4)                          Strong (1), Weak (2) 

   Playing-decision ( C)                 No(0), Yes (1) 

Referring the above  mentioned discretized values, Table-A.1 looks likeTable-A.2 and it is, indeed, 

the output of any discretizer like MIL[23]. 

Table A.2: Discretized  'golf-playing’  data set 

 

 
Day Outlook Humidity Temp Windy Playing-decisio 

1 1 1 1 2 O 

2 1 1 1 1 O 

3 2 1 1 2 1 

4 3 1 2 2 1 

5 3 2 3 2 1 

6 3 2 3 1 O 

7 2 2 3 1 1 

8 1 1 2 2 0 

9 1 2 3 2 1 

10 3 2 2 2 1 

1 1 1 2 2 1 1 
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12 2 1 2 1 1 

1 3  2 2 1 2 1 

14 3 1 2 1 O 

 
 
  C4.5 and the unpruned decision tree 

Based on the concept of entropy (as discussed in Section-2.1), the  unpruned decision tree built by 

C4.5 learner on the  non-discretized data set  (as shown in Table-A.1) is depicted in Figure-A.1 

                       

                 Fig-A.1:  Decision tree built by C4.5 over non-discretized ‘golf-playing’ data set 

Unpruned tree and the decision rule 

The decision rules (from root to leaf)  derived by  C4.5 learner are shown below. 

Rule-1:    If  (Outlook = Overcast), Then Playing-decision= Yes; 

Rule-2:    If  (Outlook=sunny) and  (Humidity = High), Then Playing-decision = No 

Rule-3:     If  (Outlook = Sunny)  and  (Humidity = Normal), Then Playing-decision = Yes; 

Rule-4:     If  (Outlook = Rain)  and   (Windy = Strong) , Then Playing-decision = No; 

Rule-5:     If (Outlook = Rain) and  (Windy = Weak), Then Playing-decision = Yes; 

Rule-6:     ( )   C = Yes  (default rule: a rule with majority class instances) 

After rule-post pruning (i.e., that prunes each rule independently of others by removing any pre-

conditions  that result in improving its estimated accuracy),  we get, 

Rule-1:  If  (Outlook = Overcast), Then Playing-decision = Yes; 

Rule-2:  If   (Humidity = High), Then Playing-decision = No 

Rule-3:  If  (Outlook = Sunny)  and  (Humidity = Normal), Then Playing-decision = Yes;  

Rule-4:  If  (Outlook = Rain)  and   (Windy = Strong) , Then Playing-decision = No; 

Rule-5:  If (Outlook = Rain) and  (Windy = Weak), Then Playing-decision = Yes; 

Rule-6: ( )   C = Yes  (default rule: a rule with majority class instances) 

 APPENDIX-B 

A brief illustration on PRISM algorithm 

It is already noted that there are 14 binary-class (i.e., yes and no) examples in ‘golf-playing’ data set. 
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 Let us first consider ‘yes’ as the recommended class, i.e.,  Playing-decision=Yes. 

 Presently, temp-data-set contains entire golf-playing data set. 

 Now, compute a (accuracy)= p/t  with respect to the present  temp-dataset  for each value of 

individual attribute (i.e., A=v). Here, p=number of instances (in  temp-dataset) in which  A=v 

and Playing-decision= ‘yes’. However, t= number of instances (in  temp-dataset) in which 

A=v  but Playing-decision = yes or no.  Calculation is shown below. 

Attribute Values of the  attribute   and   a= p/t 

Outlook For Outlook = Sunny, there are total 5 instances (out of 14) in 

which Sunny appears, i.e., t=5.  But out of 5, only 2 give  ‘yes’, 

i.e., p=2  

 Thus,  Outlook(Sunny)=2/5. 

 Likewise,  Outlook(Overcast)=4/4(max),            Outlook(Rain)==3/5 
Temperature Temperature(Hot) =    2/4,       Temperature(Mild) =    4/6 

Temperature(Cool) =    3/4 

Humidity Humidity(High) =    3/7,           Humidity(Normal) =    6/7 

Windy Windy(Weak) =   6/8 ,              Windy (Strong) =  3/6 

 

                        So,  r1:  If  (Outlook=Overcast), Then  class = PL.  [a complete rule] 

At this stage, discard the instances covered by r1  from T  and update the temp-dataset consisting of 

present T (removing the earlier contents of temp-dataset). Continuing in this way, we finally get the 

complete rule set as: 

  r1:  If   (Outlook=Overcast), Then Playing-decision = Yes.  

  r2: If   (Humidity=Normal) and ( Windy=Weak), Then Playing-decision =Yes 

  r3:  If  ( Humidity =Normal) and ( Outlook=Sunny), Then Playing-decision = Yes  

  r4:  If  (Outlook=Rain) and  (Windy=Weak), Then Playing-decision =Yes.  

  r5:  If  (Outlook=Sunny) and ( Humidity=High), Then Playing-decision = No 

 

APPENDIX-C 

Role of the Interface s/w:       Let us take the rules generated by C4.5 from ‘golf.playing’ problem (as 

shown in Appendix-A) .  These are once again presented below. 

Rule-1:  If  (Outlook = Overcast), Then Playing-decision = Yes; 

The rule with discretized attributes’ values is as:   If (Outlook=2), Then Playing-decision =1 

Rule-2:  If  (Humidity = High), Then Playing-decision = No; 

The rule with discretized attributes’ values is as:  If (Humidity=1), Then Playing-decision =0 

Rule-3:  If  (Outlook = Sunny)  and  (Humidity = Normal), Then Playing-decision = Yes; 
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  The rule with discretized attributes’ values is as:  If (Outlook=1) and (Humidity=2), Then Playing-
decision =1 

Rule-4:  If  (Outlook = Rain)  and   (Windy = Strong) , Then Playing-decision = No; 

The rule with discretized attributes’ values is as:   If (Outlook=3) and (Windy=1), Then Playing-
decision =0 

Rule-5:  If  (Outlook = Rain) and (Windy = Weak), Then Playing-decision = Yes; 

The rule with discretized attributes’ values is as:   If (Outlook=3) and (Windy=2), Then Playing-
decision =1 

Rule-6:  (  )  C =Yes 

 The rule in discretized form is as:  ( ) C=1 

The Interface s/w[21] gives the tabular representation of above presented rules with discretized 

attributes’ values as follows by eliminating ‘If ‘ and ‘Then’ parts. 

Output of Interface s/w 
                           Outlook  Humidity            Temperature         Windy  Playing-decision 

Rule 1:         2                      *                            *                           *                    1  

Rule 2:         *                      1                            *                    *                    0  

Rule 3:         1                      2                            *                           *                    1  

Rule 4:         3                      *                            *                           1                    0  

Rule 5:         3                      *                            *                           2                    1  

Rule-6          *                      *                            *                           *                    1 (default rule) 

The symbol ‘*’ in a rule denotes here the don’t care  symbol, and implies that the attribute  

corresponding to ‘*’  has no  importance in that  rule. Now,  for  illustration  of  tabular representation 

of rule, let us  consider  a  rule, say Rule-1. In fact, this rule has only  one  pre-condition  with  

numeric  value (2), and it  is  undoubtedly for attribute Outlook,  since  pre-conditions of the rest 

attributes: Humidity, Temperature   and  Windy are absent  in  this  rule.  That  is why,  numeric  value 

2  is  placed  just  below the Outlook  attribute in  the row representing  Rule-1 and ‘*’ for the 

respective  positions of the other non-target attributes.  Surely, the row-representing  this rules will be 

read as:  

                                     If  (Outlook=Overcast(2)), Then  (Playing-decision=Yes(1)). 

     Note that  the length  of each of these rules  is measured  here 5, since total number  of  attributes 

(including  the target one)  is  5.   Apart from the above rules in the rule set, a default rule is added to 

the set. In fact, it is originally generated by C4.5 for each data set. This rule is without any conditions 

and has a consequent part only. The assigned class-label in the consequent part is the majority class 

label of the samples in the training set. In general, it is placed at the bottom of the generated rule set.  

  The original form of the rules generated by the PRISM learner from ‘golf-playing.data’ are as 

follows: 

   r1:  If  (Outlook=Overcast), Then Playing-decision = Yes.  
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   r2: If  (Humidity=Normal) and ( Windy=Weak), Then Playing-decision =Yes  

   r3:  If  ( Humidity =Normal) and ( Outlook=Sunny), Then Playing-decision =Yes  

   r4:  If  (Outlook=Rain) and  (Windy=Weak), Then Playing-decision =Yes.  

   r5:  If (Outlook=Sunny) and (Humidity=High), Then Playing-decision = No 

Thus. tabular like representation of  the above rule set performed by the  Interface  s/w (eliminating         

‘If – Then’ parts from each  rule)  is  shown  below: 

             Outlook   Humidity       Temperature      Windy   Playing-decision 

Rule 1:         2           *                      *               *                    1  (Identical rule with Rule-1 in C4.5) 

Rule 2:         *           2                      *               2                    1  (Distinct rule with Rule-3 in C4.5) 

Rule 3:         1            2                     *                *                   1  ((Identical rule with Rule-3 in C4.5) 

Rule 4:         3            *                      *               2                   1  (Identical rule with  Rule-5 in C4.5) 

Rule 5:         1            1                      *               *                   0  (sub-rule of  Rule-2 in  C4.5) 

 

 

Highlights 

 The proposed hybrid system provides user friendly environment to the practitioners for 

detecting diseases. 

 The suggested system keeps ability to predict very good accuracy rate in comparison to the 

other state-of-the-art-models in the literature. 

 True positive rate yield by the system for each dataset is high, whereas false positive rate is 

low. 

 The empirical outcomes positively demonstrate that the new system is effective in 

undertaking disease treatment. 

 




