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Abstract— At different milestones in the software evolution process, software quality 

evaluation is a trivial task. This can be used to schedule performance assessment, quality 

management and project enhancement operations. Two techniques Linear Programming with 

Multiple Parameters (LPMP) and Quadratic Programming with Multiple Parameters (QPMP) 

for assessing the quality of software had been employed in the ongoing studies and researches. 

Several experts conducted research with Support Vector Machine (SVM), Neutral network 

(NN), C5.0 for quality assessment. These experiments had given poor and low results. In this 

research, by utilizing corresponding attributes of a multiple datasets, we fine-tuned prediction 

efficiency. In addition to employing a method of selecting a subgroup of relevant variables and 

variance matrix for getting greater and better results, we have applied different tests on latest 

approaches and accomplished good results for other predictive activities. Machine learning 

(ML) algorithms such as Logistic regression (LR), AdaBoost (AB), Random Decision Forest 

(RDF), Bagging Classifier (BC) and Classification Tree (CT) are executed on the data to 

forecast the software functionality, reliability and disclosed the association between the 

parameters of quality and production. The investigational outcomes proved that the measure 

of software quality can be well determined and assessed by ML techniques. 

 

Keywords—Software Reliability, Tree Boosting, AdaBoost, Machine Learning, Software 

Functionality. 

 

I INTRODUCTION 

Machine learning techniques help us to investigate, generalize and predict large datasets. 

Machine learning is related closely to statistics and decision-making. Machine learning techniques 

are used for various purposes, such as weather forecasting, estimating the sales of a product, 

calculating the probability of a team winning in a match etc. 

Many tech vendors need to develop and distribute quality software products in the 

specified time-frame and cost. However, forecasting the quality of early-stage applications 

would greatly help programmers in the management and quality assurance of applications, and 

would make the distribution of effort and resources more effective. Defects may arise in any 

stage of software evolution process starting form requirements analysis to deployment phase. So 

there is a need to perform assessment after completion of every milestone. The factors that 

measure the quality levels of software are number of defects per unit, security vulnerabilities, 

software process model, size of software etc. Among all the factors, number of defects per unit is 

considered as most important factor. 

There are some non-functional qualities or characteristics to the standard of applications, 

such as durability, maintenance, accessibility, consistency and productivity. Even if many 

considerations remain, it is primarily the reliability and maintainability of the calculation of the 
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output of a program in operation. With a lower error or loss frequency, high quality applications 

should be accurate. 

II RELATED WORKS 

Ceran, A. A et al., (2020). [1] employed covariance matrix and feature selection method for 

predicting the software functionality. 

Design flaws in the software affect the maintainability of the software. Thongkum, Pet al., 

(2020). [2] Employed Extreme Learning Machine (ELM) to predict design flaws of the software. 

They assessed 20 application packages, compared ML models and found out that one particular 

model outperformed all other models. 

Based on number of defects in the software, two studies were introduced in the past for 

predicting the functionality of software. Both these studies used International Software 

Benchmarking Standard Group (ISBGS) dataset. ISBGS-10 data set released in January 2007 

contains 106 attributes and 4,017 records.  

Methods such as LPMP and QPMP were executed on ISBGS dataset in the first study [3] and 

finally the prediction accuracies were analyzed. The performance of LPMP and QPMP on the 

ISBSG-10 database is measured   by employing k-fold cross validation technique. 11 features 

and 374 records were left in the ISBGS dataset after preprocessing. High and low are the two 

parameters used to indicate software quality level.  

Software quality level is determined using the formula given in Equation 1.  

          SQ = mn+2*mj+4*et                     (Eq.1) 

Where SQ denotes Software Quality, mn denotes number of minor defects, mj denotes number 

of major defects and et denotes number of extreme defects.  

In the second study [4], the software is classified as high or low by employing NN, SVM, 

and C5.0 classifiers. If the number of minor defects is not more than 10, extreme defects don’t 

exist, and number of major defects is not more than 1, then the quality level of software is 

assumed as high class. The remaining cases are assumed as low class. 53 features and 746 

projects were left in the ISBGS dataset after preprocessing.  

To predict the software quality, Rashid et al. [5] employed experience based ML approach 

where the solutions to the prediction problems are solved using stored cases or past experiences. 

The parameters used for predicting the quality of the software are software evolution type, 

functional points count, degree of complexity, Lines Of Code (LOC), software developer skills 

and experience. Euclidian distance (ED) or The Manhattan distance (MD) is used to measure the 

deviation. The results were captured in the storage system when the estimated error is not more 

than 10%. The numbers of inputs which are received from the user are restricted to particular 

value. In order to predict accurate values, the values in the database must be close to each other. 

Reddivari, S et al., (2019). [6] Conducted observations using 8 ML models to predict 

reliability and maintainability of software, and concluded that Random Forest classifier is the 

best performer than others with an Area under Curve (AUC) of more than 0.8.  

Rana, R et al., (2015). [7] Proposed a systematic architecture adapted from ISO/IEC 15939 

information model for the use of large scale software businesses of ML techniques for 

measurement and estimation of software quality. 

Chandra, K et al., (2016). [8] Developed a prediction model to improve the quality of 

software by considering software versions’ data points. 

Prabha, C. L et al., (2020). [9] Used hybrid feature reduction scheme along with artificial 

neural networks to predict software defects. 
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Nalini, C et al., (2020). [10] Used code profiles and genetic neuro evolution algorithm to 

predict software defects. 

Gu, Z., Wang, Jet al., (2020). [11] Suggested a consistency model for machine learning 

constructing energy systems that could be used in the quality improvement of production of the 

system. 

Malhotra, R et al., (2020). [12] The research study examined academic papers conducted 

between January 1990 and January 2019, in which deep learning was used to test the estimation 

metrics for software efficiency. In this paper 20 different studies and 7 deep learning domain 

groups are listed in the software quality prediction metrics. 

Immaculate, S. D, et al., (2019). [13] utilized three supervised machine learning 

algorithms to design and forecast the creation and usage of historical data based software glitches 

by classification regression, probabilistic classification, i.e. Naïve Bayes and classification trees. 

P. Singh  (2019). [14] performed detailed studies in order to analyse and engage with 

varied incarnations of classifiers on ongoing activities, including undersampling, oversampling 

and mixed approaches. Six approaches with six classifiers in 12 datasets are tested. 

Malhotra, R et al., (2020). [15] Done comparisons on nine java based software open-

source programmes using four usually-used extraction technologies from PROMISE repository. 

The findings of this analysis demonstrate that autoencoders are an efficient way of minimising 

effectively the dimensions of a data collection of programme defects. 

M. Banga et al., (2019). [16] An analysis of software reliability models based on machine 

learning techniques was performed. Once the plenary work on defects caused during fault 

removal was reviewed, they had already suggested a new method, using machine learning 

methods, which were focused on detection of the most important parameters that impact software 

protection. 

K. Tanaka et al., (2019). [17] Auto-sklearn has been tested by using software metrics 

from 20 free licensed software projects for intra-release defect foreclosure, as well as correlated 

auto-sklearn with various classifiers to forecast the number of flaws in software systems. Results 

revealed that auto-sklearn behaved in a similar way to random decision forest, which in previous 

studies is one of the better prediction models for defect prediction. 

M. W. Thant et al., (2019). [18] Suggested a hybrid approach which is paired with the use 

of Minimal level-Redundancy-Maximum-Correlation (MRMC) function. Five NASA Metrics 

Data Program datasets were studied and test results demonstrated that the hybrid method with 

MRMC provided greater precision than Support Vector Machine. 

Khan, F et al., (2020). [19] Used seven ML models along with artificial immune 

networks to predict defective components of software. The software bug prediction model 

findings have shown that the ML models with optimization of hyper parameters worked well 

than their default hyper parameters. 

S. Rathaur et al., (2020). [20] Used an ML model i.e multiple linear regression to predict 

defect density in open source software. The predictor variables used are Source Lines of Code 

(SLOC), developers count, commits count and code churn. The rmality test was performed for 

the predictor variables and the correlation matrix was tested between the defect density of the 

free software and each of the predictor variables.  

All the above mentioned studies used binary classification to predict software quality. By 

employing recent classification methods, considering size in terms of function points, we tried to 

improve accuracy levels of prediction models. 
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III MATERIALS AND METHODS 

A. DATASETS 

Evidence-Based Software Portfolio Management (EBSPM) dataset has 492 completed software 

projects from the Netherlands and Belgium, from 4 separate firms. Any of the EPSPM dataset's 

properties are seen in Table I. The recent release of the dataset on 24 Jul 2017 doesn’t contain 

defect density value. The Defect Density value (Dd) was determined using the formula given 

below and Dd was introduced as a feature in both the datasets (EBSPM and ISBSG). 

Dd = defect * 1000 / fs. 

Where fs denotes functional size. 

In compliance with the ISBSG Update 11(June 2009), 5052 projects are in action. The ISBSG 

data set has twenty features of primary level and 118 features of secondary level. Any of this 

data sample's features are seen in Table II.  

 

B. DATA PREPROCESSING 

The training accuracy is improved when the dataset was preprocessed effectively and 

efficiently. So, we removed and deleted rows with missing values and undefined values. The 

final summary of these two datasets were shown in Table III and Table IV. ISBSG Dataset were 

limited to 11 features and 1 target class,  EBSPM Dataset has been limited to 10 and one target 

class following preprocessing. Further, as per the defect density values of the project in Table V 

and VI, we categorized the software quality indicator into four groups. 

 

C. MACHINE LEARNING METHODS 

Logistic regression (LR) 

 

Method of logistic regression addresses questions of classification. It is designed to predict the 

possibility of a class or class object. Logistic regression approaches an s-formed curve under 

which the binary response variables estimate their characteristics. The translation from the 

logistic equation to the Ordinary Least Square-type equation obtains a dynamic optimized 

equation in this method. Below is the equation (1) resulting from the probabilistic method. P is 

the chance of Y=1 and 1-P the risk of obtaining Y=0. 

            𝑙𝑛 (
𝑃

1−𝑃
) = 𝑐 + 𝑑𝑥                  Eq. (1) 

P from the regression model can also be extracted. The regression function in Equation (2) 

measures the predicted likelihood of X with Y=1 for a given value. 

 

       𝑃 =
exp(𝑐+𝑑𝑥)

1+exp(𝑐+𝑑𝑥)
= 

𝑒𝑐+𝑑𝑥

1+𝑒𝑐+𝑑𝑥
           Eq. (2) 

 

AdaBoost (AB) 

Adaptive boosting has been successful in binary classification and makes the weak 

learner a strong learner by adjusting its weight. 

 

Random Decision Forest (RDF) 

Random Forest is an ensemble classifier which is supposed to be graded and regressed. It 

builds the number of classification trees on multiple data sub-samples and takes a minimum of 
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predictive precision and also tests model override. The classification of its performance is based 

on class mode and utilizes average trees for regression. 

 

Bagging Classifier (BC)  

Bagging classifier is an ensemble meta-estimator that matches each of the base classifiers 

in random subsets of the initial data set and then combines respective individual forecasts to 

form a final forecast (either by voting or an averaging). 

 

Classification Tree (CT) 

Classification tree is a tree formed in a recursive order where each node represents a 

potential decision with edges that indicate the possible pathway between nodes. Instance 

classification essentially parallels the direction from the tree's root to its leaves. The 

characteristics used for decision-making are selectively chosen to ensure a high degree of 

information gain. 

Table I. Features of EBSPM Data 

Project_ID Organization Short_Project_Description Year_technical_go_live 

323 3 

Maintenance and 

enhancements project on an 

existing…… 

2012 

480 3 

Maintenance project on an 

existing Mobile 

application… 

2016 

482 3 
Enhancements project on an 

existing CRM application… 
2016 

474 3 

Enhancements project on an 

existing Internet 

application… 

2016 

297 1 
Maintenance and new 

functionality release on …. 
2012 

 

Table II. Features of ISBSG Data 

Project_ID 
DataQuality

Rating 
UFPRating YearofProject CountApproach 

10001 4 A 1998 5 

10075 1 B 1994 3 

10136 2 B 2004 3 

10143 1 A 1998 3 

10163 1 A 1994 4 

 

TABLE III. ISBSG DATASET 

Step Attribute Filter Excluded 

Projects 

Residual 

Projects 
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1 Defect Density Null 4292 760 

2 FP Standard Other/Null/Not given 15 745 

 

TABLE IV. EBSPM DATASET 

Step Attribute Filter Excluded 

Projects 

Residual 

Projects 

1 Defect Process Null 222 270 

 

    TABLE V. EBSPM QUALITY LEVELS 

  TABLE VI. ISBSG QUALITY LEVELS 

Quality Level Defect Density Excluded Projects 

1 0-80 56 

2 80-160 74 

3 160-320 54 

4 320-4875 86 

Quality Level Defect Density Excluded Projects 

1 0 273 

2 0,5-20 246 

3 20-80 173 

4 80-4237 52 

 

IV IMPLEMENTATION 

After pre-processing the excel files have been interpreted and the particulars have been 

forwarded to a vector using Python function. There have been two parameters generated and one 

parameter has been given the objective attribute (Quality level) and another parameter was 

applied to other selected properties. 

Next, the matrix of correlation is accomplished. Both data sets were shown to have an 

exceptionally high association with software consistency with the number of defects. The 

timeframe and cost of production of the software are likely to influence its consistency. 

Secondly, the table of function significance indicates the target class's comparison to 

other classes. The most influential feature of the data collection is the number of errors, one of 

the variables used to determine consistency. 

For implementation of the models, we used the Python scikit-learn library. The 

preparation and test details were split by a 33-percent ratio of 67 percent. Figure 1 indicates that 

a defect mechanism is highly significant in the EBSPM dataset, but its functionality affects 

software quality almost equally.  

Cost and time both play a major role in estimating consistency. Figure 2 indicates, on the 

other hand, that in the ISBGS dataset defect quantity is again the most important characteristic. 

The remaining features are about the same and do not matter as many faults. 

 

Software was graded as high-quality or low-quality in the previous immediately 

comparable two reports. This can lead, particularly when at frontiers, to wrong results. That's 

why the standard was split into four grades. Since we have four class types, prediction 

algorithms need to be used in multi-class predictions. 
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Fig. 1. Selected Attributes and their importance in EBSPM Dataset 

 

 
Fig. 2. Selected Attributes and their importance in ISBSG Dataset 

 

V RESULTS AND DISCUSSION 

The scikit-learn library algorithms were useful for our purposes, particularly in several 

class prediction problems. The findings of previous studies are shown in Table VII. 

Table VIII and Table IX display the top five accuracies of the methods utilized. There 

were variations in precision between the interdependent coefficients in two datasets. Often, an 

essential element impacting precision is the gap in the variety of projects between two datasets. 

We also evaluated classification techniques on two datasets using Scikit-learn library. 

Latest algorithms that stand up for multi-class classification have been researched by us. The 

exactness of these methods in EBSPM data set is 92.28% and in ISBSG data set is 92.22% 
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respectively. Appropriate level multiclass consistency estimation may be accomplished relative 

to previous strictly comparable tests. Graph showing results of current work is given in figure 3. 

 

Table VII: Results of previous study methods 

 

Technique Accuracy 

LPMP 61.70% 

QPMP 66.90% 

SVM 69.17% 

NN 70.43% 

C5.0 77.88% 

 

Table VIII: Current work results on ISBSG DATASET 

 

Technique Accuracy 

LR 69.92% 

CT 89.43% 

RDF 89.43% 

AB 92.28% 

BC 92.28% 

 

Table IX: Current work results on EBSPM DATASET 

 

Technique Accuracy 

AB 65.56% 

RDF 66.67% 

BC 67.78% 

CT 67.78% 

LR 92.22% 

 

 
Figure 3: Graph showing results of current work 
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