
European Journal of Molecular & Clinical Medicine
ISSN 2515-8260 Volume 7, Issue 11, 2020

4341

A Comparative Analysis and Prognosis of Software

Functionality with Machine Learning Techniques

Dr Y Narasimha Rao

Professor and HOD, Department of Computer Science and Engineering,

 QIS College of Engineering and Technology, Ongole.

Abstract— At different milestones in the software evolution process, software quality

evaluation is a trivial task. This can be used to schedule performance assessment, quality

management and project enhancement operations. Two techniques Linear Programming with

Multiple Parameters (LPMP) and Quadratic Programming with Multiple Parameters (QPMP)

for assessing the quality of software had been employed in the ongoing studies and researches.

Several experts conducted research with Support Vector Machine (SVM), Neutral network

(NN), C5.0 for quality assessment. These experiments had given poor and low results. In this

research, by utilizing corresponding attributes of a multiple datasets, we fine-tuned prediction

efficiency. In addition to employing a method of selecting a subgroup of relevant variables and

variance matrix for getting greater and better results, we have applied different tests on latest

approaches and accomplished good results for other predictive activities. Machine learning

(ML) algorithms such as Logistic regression (LR), AdaBoost (AB), Random Decision Forest

(RDF), Bagging Classifier (BC) and Classification Tree (CT) are executed on the data to

forecast the software functionality, reliability and disclosed the association between the

parameters of quality and production. The investigational outcomes proved that the measure

of software quality can be well determined and assessed by ML techniques.

Keywords—Software Reliability, Tree Boosting, AdaBoost, Machine Learning, Software

Functionality.

I INTRODUCTION

Machine learning techniques help us to investigate, generalize and predict large datasets.

Machine learning is related closely to statistics and decision-making. Machine learning techniques

are used for various purposes, such as weather forecasting, estimating the sales of a product,

calculating the probability of a team winning in a match etc.

Many tech vendors need to develop and distribute quality software products in the

specified time-frame and cost. However, forecasting the quality of early-stage applications

would greatly help programmers in the management and quality assurance of applications, and

would make the distribution of effort and resources more effective. Defects may arise in any

stage of software evolution process starting form requirements analysis to deployment phase. So

there is a need to perform assessment after completion of every milestone. The factors that

measure the quality levels of software are number of defects per unit, security vulnerabilities,

software process model, size of software etc. Among all the factors, number of defects per unit is

considered as most important factor.

There are some non-functional qualities or characteristics to the standard of applications,

such as durability, maintenance, accessibility, consistency and productivity. Even if many

considerations remain, it is primarily the reliability and maintainability of the calculation of the

European Journal of Molecular & Clinical Medicine
ISSN 2515-8260 Volume 7, Issue 11, 2020

4342

output of a program in operation. With a lower error or loss frequency, high quality applications

should be accurate.

II RELATED WORKS

Ceran, A. A et al., (2020). [1] employed covariance matrix and feature selection method for

predicting the software functionality.

Design flaws in the software affect the maintainability of the software. Thongkum, Pet al.,

(2020). [2] Employed Extreme Learning Machine (ELM) to predict design flaws of the software.

They assessed 20 application packages, compared ML models and found out that one particular

model outperformed all other models.

Based on number of defects in the software, two studies were introduced in the past for

predicting the functionality of software. Both these studies used International Software

Benchmarking Standard Group (ISBGS) dataset. ISBGS-10 data set released in January 2007

contains 106 attributes and 4,017 records.

Methods such as LPMP and QPMP were executed on ISBGS dataset in the first study [3] and

finally the prediction accuracies were analyzed. The performance of LPMP and QPMP on the

ISBSG-10 database is measured by employing k-fold cross validation technique. 11 features

and 374 records were left in the ISBGS dataset after preprocessing. High and low are the two

parameters used to indicate software quality level.

Software quality level is determined using the formula given in Equation 1.

 SQ = mn+2*mj+4*et (Eq.1)

Where SQ denotes Software Quality, mn denotes number of minor defects, mj denotes number

of major defects and et denotes number of extreme defects.

In the second study [4], the software is classified as high or low by employing NN, SVM,

and C5.0 classifiers. If the number of minor defects is not more than 10, extreme defects don’t

exist, and number of major defects is not more than 1, then the quality level of software is

assumed as high class. The remaining cases are assumed as low class. 53 features and 746

projects were left in the ISBGS dataset after preprocessing.

To predict the software quality, Rashid et al. [5] employed experience based ML approach

where the solutions to the prediction problems are solved using stored cases or past experiences.

The parameters used for predicting the quality of the software are software evolution type,

functional points count, degree of complexity, Lines Of Code (LOC), software developer skills

and experience. Euclidian distance (ED) or The Manhattan distance (MD) is used to measure the

deviation. The results were captured in the storage system when the estimated error is not more

than 10%. The numbers of inputs which are received from the user are restricted to particular

value. In order to predict accurate values, the values in the database must be close to each other.

Reddivari, S et al., (2019). [6] Conducted observations using 8 ML models to predict

reliability and maintainability of software, and concluded that Random Forest classifier is the

best performer than others with an Area under Curve (AUC) of more than 0.8.

Rana, R et al., (2015). [7] Proposed a systematic architecture adapted from ISO/IEC 15939

information model for the use of large scale software businesses of ML techniques for

measurement and estimation of software quality.

Chandra, K et al., (2016). [8] Developed a prediction model to improve the quality of

software by considering software versions’ data points.

Prabha, C. L et al., (2020). [9] Used hybrid feature reduction scheme along with artificial

neural networks to predict software defects.

European Journal of Molecular & Clinical Medicine
ISSN 2515-8260 Volume 7, Issue 11, 2020

4343

Nalini, C et al., (2020). [10] Used code profiles and genetic neuro evolution algorithm to

predict software defects.

Gu, Z., Wang, Jet al., (2020). [11] Suggested a consistency model for machine learning

constructing energy systems that could be used in the quality improvement of production of the

system.

Malhotra, R et al., (2020). [12] The research study examined academic papers conducted

between January 1990 and January 2019, in which deep learning was used to test the estimation

metrics for software efficiency. In this paper 20 different studies and 7 deep learning domain

groups are listed in the software quality prediction metrics.

Immaculate, S. D, et al., (2019). [13] utilized three supervised machine learning

algorithms to design and forecast the creation and usage of historical data based software glitches

by classification regression, probabilistic classification, i.e. Naïve Bayes and classification trees.

P. Singh (2019). [14] performed detailed studies in order to analyse and engage with

varied incarnations of classifiers on ongoing activities, including undersampling, oversampling

and mixed approaches. Six approaches with six classifiers in 12 datasets are tested.

Malhotra, R et al., (2020). [15] Done comparisons on nine java based software open-

source programmes using four usually-used extraction technologies from PROMISE repository.

The findings of this analysis demonstrate that autoencoders are an efficient way of minimising

effectively the dimensions of a data collection of programme defects.

M. Banga et al., (2019). [16] An analysis of software reliability models based on machine

learning techniques was performed. Once the plenary work on defects caused during fault

removal was reviewed, they had already suggested a new method, using machine learning

methods, which were focused on detection of the most important parameters that impact software

protection.

K. Tanaka et al., (2019). [17] Auto-sklearn has been tested by using software metrics

from 20 free licensed software projects for intra-release defect foreclosure, as well as correlated

auto-sklearn with various classifiers to forecast the number of flaws in software systems. Results

revealed that auto-sklearn behaved in a similar way to random decision forest, which in previous

studies is one of the better prediction models for defect prediction.

M. W. Thant et al., (2019). [18] Suggested a hybrid approach which is paired with the use

of Minimal level-Redundancy-Maximum-Correlation (MRMC) function. Five NASA Metrics

Data Program datasets were studied and test results demonstrated that the hybrid method with

MRMC provided greater precision than Support Vector Machine.

Khan, F et al., (2020). [19] Used seven ML models along with artificial immune

networks to predict defective components of software. The software bug prediction model

findings have shown that the ML models with optimization of hyper parameters worked well

than their default hyper parameters.

S. Rathaur et al., (2020). [20] Used an ML model i.e multiple linear regression to predict

defect density in open source software. The predictor variables used are Source Lines of Code

(SLOC), developers count, commits count and code churn. The rmality test was performed for

the predictor variables and the correlation matrix was tested between the defect density of the

free software and each of the predictor variables.

All the above mentioned studies used binary classification to predict software quality. By

employing recent classification methods, considering size in terms of function points, we tried to

improve accuracy levels of prediction models.

European Journal of Molecular & Clinical Medicine
ISSN 2515-8260 Volume 7, Issue 11, 2020

4344

III MATERIALS AND METHODS

A. DATASETS

Evidence-Based Software Portfolio Management (EBSPM) dataset has 492 completed software

projects from the Netherlands and Belgium, from 4 separate firms. Any of the EPSPM dataset's

properties are seen in Table I. The recent release of the dataset on 24 Jul 2017 doesn’t contain

defect density value. The Defect Density value (Dd) was determined using the formula given

below and Dd was introduced as a feature in both the datasets (EBSPM and ISBSG).

Dd = defect * 1000 / fs.

Where fs denotes functional size.

In compliance with the ISBSG Update 11(June 2009), 5052 projects are in action. The ISBSG

data set has twenty features of primary level and 118 features of secondary level. Any of this

data sample's features are seen in Table II.

B. DATA PREPROCESSING

The training accuracy is improved when the dataset was preprocessed effectively and

efficiently. So, we removed and deleted rows with missing values and undefined values. The

final summary of these two datasets were shown in Table III and Table IV. ISBSG Dataset were

limited to 11 features and 1 target class, EBSPM Dataset has been limited to 10 and one target

class following preprocessing. Further, as per the defect density values of the project in Table V

and VI, we categorized the software quality indicator into four groups.

C. MACHINE LEARNING METHODS

Logistic regression (LR)

Method of logistic regression addresses questions of classification. It is designed to predict the

possibility of a class or class object. Logistic regression approaches an s-formed curve under

which the binary response variables estimate their characteristics. The translation from the

logistic equation to the Ordinary Least Square-type equation obtains a dynamic optimized

equation in this method. Below is the equation (1) resulting from the probabilistic method. P is

the chance of Y=1 and 1-P the risk of obtaining Y=0.

 𝑙𝑛 (
𝑃

1−𝑃
) = 𝑐 + 𝑑𝑥 Eq. (1)

P from the regression model can also be extracted. The regression function in Equation (2)

measures the predicted likelihood of X with Y=1 for a given value.

 𝑃 =
exp(𝑐+𝑑𝑥)

1+exp(𝑐+𝑑𝑥)
=

𝑒𝑐+𝑑𝑥

1+𝑒𝑐+𝑑𝑥
 Eq. (2)

AdaBoost (AB)

Adaptive boosting has been successful in binary classification and makes the weak

learner a strong learner by adjusting its weight.

Random Decision Forest (RDF)

Random Forest is an ensemble classifier which is supposed to be graded and regressed. It

builds the number of classification trees on multiple data sub-samples and takes a minimum of

European Journal of Molecular & Clinical Medicine
ISSN 2515-8260 Volume 7, Issue 11, 2020

4345

predictive precision and also tests model override. The classification of its performance is based

on class mode and utilizes average trees for regression.

Bagging Classifier (BC)

Bagging classifier is an ensemble meta-estimator that matches each of the base classifiers

in random subsets of the initial data set and then combines respective individual forecasts to

form a final forecast (either by voting or an averaging).

Classification Tree (CT)

Classification tree is a tree formed in a recursive order where each node represents a

potential decision with edges that indicate the possible pathway between nodes. Instance

classification essentially parallels the direction from the tree's root to its leaves. The

characteristics used for decision-making are selectively chosen to ensure a high degree of

information gain.

Table I. Features of EBSPM Data

Project_ID Organization Short_Project_Description Year_technical_go_live

323 3

Maintenance and

enhancements project on an

existing……

2012

480 3

Maintenance project on an

existing Mobile

application…

2016

482 3
Enhancements project on an

existing CRM application…
2016

474 3

Enhancements project on an

existing Internet

application…

2016

297 1
Maintenance and new

functionality release on ….
2012

Table II. Features of ISBSG Data

Project_ID
DataQuality

Rating
UFPRating YearofProject CountApproach

10001 4 A 1998 5

10075 1 B 1994 3

10136 2 B 2004 3

10143 1 A 1998 3

10163 1 A 1994 4

TABLE III. ISBSG DATASET

Step Attribute Filter Excluded

Projects

Residual

Projects

European Journal of Molecular & Clinical Medicine
ISSN 2515-8260 Volume 7, Issue 11, 2020

4346

1 Defect Density Null 4292 760

2 FP Standard Other/Null/Not given 15 745

TABLE IV. EBSPM DATASET

Step Attribute Filter Excluded

Projects

Residual

Projects

1 Defect Process Null 222 270

 TABLE V. EBSPM QUALITY LEVELS

 TABLE VI. ISBSG QUALITY LEVELS

Quality Level Defect Density Excluded Projects

1 0-80 56

2 80-160 74

3 160-320 54

4 320-4875 86

Quality Level Defect Density Excluded Projects

1 0 273

2 0,5-20 246

3 20-80 173

4 80-4237 52

IV IMPLEMENTATION

After pre-processing the excel files have been interpreted and the particulars have been

forwarded to a vector using Python function. There have been two parameters generated and one

parameter has been given the objective attribute (Quality level) and another parameter was

applied to other selected properties.

Next, the matrix of correlation is accomplished. Both data sets were shown to have an

exceptionally high association with software consistency with the number of defects. The

timeframe and cost of production of the software are likely to influence its consistency.

Secondly, the table of function significance indicates the target class's comparison to

other classes. The most influential feature of the data collection is the number of errors, one of

the variables used to determine consistency.

For implementation of the models, we used the Python scikit-learn library. The

preparation and test details were split by a 33-percent ratio of 67 percent. Figure 1 indicates that

a defect mechanism is highly significant in the EBSPM dataset, but its functionality affects

software quality almost equally.

Cost and time both play a major role in estimating consistency. Figure 2 indicates, on the

other hand, that in the ISBGS dataset defect quantity is again the most important characteristic.

The remaining features are about the same and do not matter as many faults.

Software was graded as high-quality or low-quality in the previous immediately

comparable two reports. This can lead, particularly when at frontiers, to wrong results. That's

why the standard was split into four grades. Since we have four class types, prediction

algorithms need to be used in multi-class predictions.

European Journal of Molecular & Clinical Medicine
ISSN 2515-8260 Volume 7, Issue 11, 2020

4347

Fig. 1. Selected Attributes and their importance in EBSPM Dataset

Fig. 2. Selected Attributes and their importance in ISBSG Dataset

V RESULTS AND DISCUSSION

The scikit-learn library algorithms were useful for our purposes, particularly in several

class prediction problems. The findings of previous studies are shown in Table VII.

Table VIII and Table IX display the top five accuracies of the methods utilized. There

were variations in precision between the interdependent coefficients in two datasets. Often, an

essential element impacting precision is the gap in the variety of projects between two datasets.

We also evaluated classification techniques on two datasets using Scikit-learn library.

Latest algorithms that stand up for multi-class classification have been researched by us. The

exactness of these methods in EBSPM data set is 92.28% and in ISBSG data set is 92.22%

0 0.05 0.1 0.15 0.2 0.25

Organization_profile

Development_method

Organization

Year_technical_go_live

Development_class

Business-domain

Actual_duration_mon…

Actual_cost_EUR

Functional_size_FP

Defects_process

EBSPM Dataset Features

0 0.1 0.2 0.3 0.4

Resource_level

Development_type

DataQualityRating

FPStandard

Pre2002PDR(afp)

SummaryWorkEffort

YearofProject

Adjustedfunctionpoints

Fnctionalsize

Totaldefectsdelivered

ISBSG Dataset Features

European Journal of Molecular & Clinical Medicine
ISSN 2515-8260 Volume 7, Issue 11, 2020

4348

respectively. Appropriate level multiclass consistency estimation may be accomplished relative

to previous strictly comparable tests. Graph showing results of current work is given in figure 3.

Table VII: Results of previous study methods

Technique Accuracy

LPMP 61.70%

QPMP 66.90%

SVM 69.17%

NN 70.43%

C5.0 77.88%

Table VIII: Current work results on ISBSG DATASET

Technique Accuracy

LR 69.92%

CT 89.43%

RDF 89.43%

AB 92.28%

BC 92.28%

Table IX: Current work results on EBSPM DATASET

Technique Accuracy

AB 65.56%

RDF 66.67%

BC 67.78%

CT 67.78%

LR 92.22%

Figure 3: Graph showing results of current work

69.92%

89.43%

89.43%

92.28%

92.28%

92.22%

67.78%

66.67%

65.56%

67.78%

0.00% 50.00% 100.00%

LR

CT

RDF

AB

BC

Accuracy

EBSPM ISBSG

European Journal of Molecular & Clinical Medicine
ISSN 2515-8260 Volume 7, Issue 11, 2020

4349

REFERENCES

[1] Ceran, A. A., & Tanriöver, Ö. Ö. (2020, June). An experimental study for software quality

prediction with machine learning methods. In 2020 International Congress on Human-

Computer Interaction, Optimization and Robotic Applications (HORA) (pp. 1-4). IEEE.

[2] Thongkum, P., & Mekruksavanich, S. (2020, March). Design Flaws Prediction for Impact on

Software Maintainability using Extreme Learning Machine. In 2020 Joint International

Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference

on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT &

NCON) (pp. 79-82). IEEE.

[3] X. Wang, Y. Zhang, L. Zhang and Y. Shi, "A Knowledge Discovery Case Study of Software

Quality Prediction: ISBSG Database," 2010 IEEE/WIC/ACM International Conference on

Web Intelligence and Intelligent Agent Technology, Toronto, ON, 2010, pp. 219-222.

[4] X. Wang, Y. Zhang, L. Zhang and Y. Shi, "A Knowledge Discovery Case Study of Software

Quality Prediction Based on Classification Models: ISBSG Database," The 11th International

Symposium on Knowledge Systems Sciences (KSS 2010), 2010.

[5] E. Rashid, S. Patnaik, and V. Bhattacherjee, "Software quality estimation using machine

learning: Case-Based reasoning technique, " International Journal of Computer Applications,

2012.

[6] Reddivari, S., & Raman, J. (2019, July). Software Quality Prediction: An Investigation Based

on Machine Learning. In 2019 IEEE 20th International Conference on Information Reuse

and Integration for Data Science (IRI) (pp. 115-122). IEEE.

[7] Rana, R., & Staron, M. (2015, September). Machine learning approach for quality assessment

and prediction in large software organizations. In 2015 6th IEEE International Conference on

Software Engineering and Service Science (ICSESS) (pp. 1098-1101). IEEE.

[8] Chandra, K., Kapoor, G., Kohli, R., & Gupta, A. (2016, February). Improving software

quality using machine learning. In 2016 International Conference on Innovation and

Challenges in Cyber Security (ICICCS-INBUSH) (pp. 115-118). IEEE.

[9] Prabha, C. L., & Shivakumar, N. (2020, June). Software Defect Prediction Using Machine

Learning Techniques. In 2020 4th International Conference on Trends in Electronics and

Informatics (ICOEI)(48184) (pp. 728-733). IEEE.

[10] Nalini, C., & Krishna, T. M. (2020, July). An Efficient Software Defect Prediction Model

Using Neuro Evalution Algorithm based on Genetic Algorithm. In 2020 Second International

Conference on Inventive Research in Computing Applications (ICIRCA) (pp. 135-138).

IEEE.

European Journal of Molecular & Clinical Medicine
ISSN 2515-8260 Volume 7, Issue 11, 2020

4350

[11] Gu, Z., Wang, J., & Luo, S. (2020, April). Investigation on the quality assurance procedure

and evaluation methodology of machine learning building energy model systems. In 2020

International Conference on Urban Engineering and Management Science (ICUEMS) (pp.

96-99). IEEE.

[12] Malhotra, R., Gupta, S., & Singh, T. (2020, July). A Systematic Review on Application of

Deep Learning Techniques for Software Quality Predictive Modeling. In 2020 International

Conference on Computational Performance Evaluation (ComPE) (pp. 332-337). IEEE.

[13] Immaculate, S. D., Begam, M. F., & Floramary, M. (2019, March). Software bug prediction

using supervised machine learning algorithms. In 2019 International Conference on Data

Science and Communication (IconDSC) (pp. 1-7). IEEE.

[14] P. Singh, "Learning from Software defect datasets," 2019 5th International Conference on

Signal Processing, Computing and Control (ISPCC), Solan, India, 2019, pp. 58-63, doi:

10.1109/ISPCC48220.2019.8988366.

[15] Malhotra, R., & Khan, K. (2020, June). A Study on Software Defect Prediction using

Feature Extraction Techniques. In 2020 8th International Conference on Reliability, Infocom

Technologies and Optimization (Trends and Future Directions)(ICRITO) (pp. 1139-1144).

IEEE.

[16] M. Banga, A. Bansal and A. Singh, "Implementation of Machine Learning Techniques in

Software Reliability: A framework," 2019 International Conference on Automation,

Computational and Technology Management (ICACTM), London, United Kingdom, 2019,

pp. 241-245, doi: 10.1109/ICACTM.2019.8776830.

[17] K. Tanaka, A. Monden and Z. Yücel, "Prediction of Software Defects Using Automated

Machine Learning," 2019 20th IEEE/ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing

(SNPD), Toyama, Japan, 2019, pp. 490-494, doi: 10.1109/SNPD.2019.8935839.

[18] M. W. Thant and N. T. T. Aung, "Software Defect Prediction using Hybrid Approach,"

2019 International Conference on Advanced Information Technologies (ICAIT), Yangon,

Myanmar, 2019, pp. 262-267, doi: 10.1109/AITC.2019.8921374.

[19] Khan, F., Kanwal, S., Alamri, S., & Mumtaz, B. (2020). Hyper-Parameter Optimization of

Classifiers, Using an Artificial Immune Network and Its Application to Software Bug

Prediction. IEEE Access, 8, 20954-20964.

[20] S. Rathaur, N. Kamath and U. Ghanekar, "Software Defect Density Prediction based on

Multiple Linear Regression," 2020 Second International Conference on Inventive Research

in Computing Applications (ICIRCA), Coimbatore, India, 2020, pp. 434-439,

doi:10.1109/ICIRCA48905.2020.9183110.

