

 European Journal of Molecular & Clinical Medicine ISSN 2515-8260

Volume 8, Issue 2, 2021

986

Abstract: In general computing theory, Array is one of the data structures to hold a group of same

data type elements. Static array holds the underlying elements in an initial allocated memory space.

In contrast, dynamic array grows the memory allocation automatically and dynamically based on the

insertion request volume. Our research work is to leverage dynamic memory overlay array mechanism

in Enterprise Data Hub. It is continuation of our earlier work on Hybrid LRU Algorithm, which

depicts about the experimental advantage of execution time optimization and efficient page/cache hit

ratio, using hybrid Least Recently Used algorithm with priority mechanism. With the ability to change

the allocated space dynamically using memory overlay concept, Dynamic array improves the storage

scalability and faster execution.

Keywords: Memory Overlay, Dynamic Array, Big Data, Enterprise Data Hub, Cache Algorithm,

Hybrid LRU (Least Recently Used), Execution Complexity, Membound, etc.

I. INTRODUCTION

In the rapid transformation of Information Technology, enterprise data growth [15] is phenomenal.

Enterprise Data Hub [1] is a solution to build and maintain the golden records of any enterprise as shared

trustable enterprise data. Most Big Data solutions [4] are based on disk based data processing and

in-memory [16] on need basis. During the earlier research work, hybrid LRU algorithm [9] was

developed with the parametrized data elements. Ultimately, it was depicting about the efficient way of

in-memory caching [10] to handle the data in the most effective logic.

As the next improvement step, the research work is shifted from data storage/processing to data

structure [23]. In this paper, the big data is processed with highly dynamic data structure – Dynamic

Array. By extending the previous hybrid LRU [1] with the flexible and scalable Dynamic Array [3], this

research work depicts the final efficiencies of Enterprise Data Hub system in the industry.

II. LITERATURE REVIEW

A. Industry Data Growth

In the software industry, the rate of data growth is phenomenal. The law of exponential data growth is

seen since the internet technologies evolved in mid 1990s. To prove this statement, the internet world

statistics recorded 16 million internet users in 1995; now it is 4,700 million users.

Global Big Data Analytics Market [15] predicated US$ 37.34 billion value in 2018; expected target of

US$ 105.08 billion by 2027 with CAGR of 12.3%. Related data is formed from every web click and

social event across the world.

MEMORY OVERLAY BASED HYBRID LRU ALGORITHM FOR

ENTERPRISE DATA HUB

Dr. Murugan A – Associate Professor and Ganesan S – Research Scholar,

PG & Research Dept. of Computer Science, Dr. Ambedkar Govt. Arts College,

University of Madras, Chennai, India

 European Journal of Molecular & Clinical Medicine ISSN 2515-8260

Volume 8, Issue 2, 2021

987

Fig. 1. One minute usage in Internet 2020

Today, 2.5 quintillion bytes of data [2] are generated every day. It is depicted in an internet minute

usage during 2020.

B. Enterprise Data Hub

In the recent decade, industry has few emerging disruptive technologies like big data, cloud computing,

etc. Enterprise Data Hub (EDH) is the proposed solution which is a central data repository [5] for any

enterprise. It can be built using open-sourced Big Data tools [6] and techniques like, Hadoop Distribution

File System, Map Reduce, Hive, etc. Ultimately, the system produces the master golden data as single

source of the truth for any enterprise.

Fig. 2. Enterprise Data Hub Model

. Technology is expected to add the business value. EDH model generates master data store for any report

dimensions at any point of time. In terms of credibility, data integrity and governance plays a vital role in

EDH.

C. Related Researches

In computer architecture, virtual memory [20, 24] is one of the most significant inventions to innovate

the new design. Core operating system [21, 26] contains the functions such as memory capacity

management, inter-process protection, and data sharing. This dynamic memory [14, 25] also enables the

simple implementation of several techniques to improve the execution performance [28] like

copy-on-write, page wipping, etc. With the key success factory of its power and elegant solution, it is

used in almost all modern high performance systems.

By design, each virtual page [16] can be mapped to both a physical page and an overlay. Memory

overlay contains only a subset of cache lines from the virtual page, and cache lines that are present in the

overlay. Dynamic data structure [1] plays a vital role in memory overlay [3] design.

Last year, the earlier research work was to develop Hybrid LRU [1] with static data structure model.

 European Journal of Molecular & Clinical Medicine ISSN 2515-8260

Volume 8, Issue 2, 2021

988

Primary research of this paper is to experiment [3, 16] the improvement of Hybrid LRU using dynamic

array data structure in memory overlay.

III. HYBRID ALGORITHM

Hybrid LRU algorithm provides an efficient algorithm to handle enterprise data hub using prioritized

LRU design with efficient cache hierarchy [10].

Fig. 3. Hybrid LRU Design

This approach was to use replacement [8] policies (cache algorithms), which will choose the element to

remove from the cache when we need space for a new element.

A. Experimentation Summary

On comparison of it with existing LRU algorithm, hybrid LRU enables to get and prove two key

benefits. One is a significant (~30%) decrease of the execution time to extract data from cache store

during object cache extraction process. As the second benefit, it gets an efficient cache hit ratio about

~10% higher than traditional LRU algorithm.

B. Experimentation Results

Execution time is measured by the time taken to fetch the required element from the cache store [9]

either cache hit or miss. Experimentation was validated with data set of 10, 150, 1300 and 10500 between

Traditional and Hybrid Least Recently Used algorithms. It was evident that Hybrid version was better

with the execution time.

Cache hit ratio is mathematically calculated by dividend as the number of successful requests served by

the cache and divisor as the number of received requests. Experimented results varied between 99 and 87

for data volume of 10 and 10,500 respectively using Traditional Least Recently Used algorithm. At the

same time, Hybrid Least Recently Used algorithm optimized between 99.8 and 94 for the same data set.

As per the industry standard, Cache Hit Ratio is calculated using the below formula:

IV. MEMORY OVERLAY

A. Overlays in Memory Management

In memory management, fixed partitioning (like static array) is limited by the maximum size of the

partition. This constraint never be span over another computing process. Overlays [3] concept is to load

the needed memory as a part, not complete program.

B. Dynamic Array - Differentiation

Dynamic array implements the concept of overlays in memory management. Data structure theory

defines array as an arrangement of information in one or more dimensions.

 There are two types of array storage namely static and dynamic. Static array elements are often stored

 European Journal of Molecular & Clinical Medicine ISSN 2515-8260

Volume 8, Issue 2, 2021

989

contiguously in the computer's memory. The size of static array memory to be allocated, is known to the

compiler as predefined case.

Dynamic array memory is allocated during execution of instructions. Heap is meant for a pile of

memory space available to programmers to allocate and de-allocate during run time. On programming

the improper memory handling, the underlying application will lead to the memory leak and the

subsequent system crashes.

In computer memory management [10], static array is persisted in Stack, whereas dynamic array in

Heap memory.

Fig. 4. Stack and Heap Storage

C. Dynamic Array - Internals

By design, Dynamic arrays are more flexible/dynamic during the execution of a program. Static array

structure can't do much, if the array is filled during program execution. However, Dynamic array [1] can

keep pushing values into the array at runtime.

Initially, dynamic array is constructed with the fixed size array to store the starting elements

contiguously in the system heap. Rest of the unused allocation is reserved at the end of the underlying

dynamic array. During execution, the new elements are added in a constant time slot by leveraging the

reserved space until free space is completely consumed.

Fig. 5. Dynamic Array Data Insertion Process

 European Journal of Molecular & Clinical Medicine ISSN 2515-8260

Volume 8, Issue 2, 2021

990

Let us assume that dynamic array completes the consumption of the available free space in heap

storage. On adding a new element with this criterion, the underlying fixed-sized array needs to be

increased in size as drawn above. Flip side of this approach is expensive to allocate new space and move

over the elements.

D. Dynamic Array - Complexity

Order of execution time of an algorithm quantifies the amount of time taken by the algorithm to run as

a function of the length of the input. Here is the tabular data to depict:

Table I: Dynamic Array – Order of Execution

Operation Parameter Time

Complexity

1 Indexing O (1)

2 Insert at top O (N)

3 Insert at bottom O (1) – not full

O (N) – full

array

4 Read O (1)

5 Delete O (N)

N: queue size

V. TECHNICAL IMPLEMENTATION

A. System Logic

In the earlier paper, Enterprise Data Hub (EDH) system was constructed using Hybrid LRU with the

parameterized priority queue logic. Here, the research work is extended to improve from the traditional

array structure to dynamic overlay array model.

B. Algorithm Used

Proposed pseudo code to implement dynamic array for Enterprise Data Hub

__

Algorithm: Dynamic overlay for Enterprise Data Hub

Input: NYSE stock data

Output: Faster retrieval of large data set

 European Journal of Molecular & Clinical Medicine ISSN 2515-8260

Volume 8, Issue 2, 2021

991

begin

 let MemBound is the constant amount at which the memory stack is increased

 let Top is the pointer to top of the memory stack

 let Length denotes the size of the allocated memory stack

 funtion Type[] CreateNew(Type[] existMemStack)

 begin

 Create new memory stack as newMemStack

 Allocate newMemStack with size of (Length + MemBound)

 Copy the content from existMemStack to newMemStack

 Resize the value of Length variable by adding MemBound

 return newMemStack

end

function Type[] Push(Type[] existMemStack, Type insertElement)

begin

 if (Top is equal to Length)

 begin

 existMemStack = CreateNew(existMemStack)

 end

 Insert element at Top of the memory stack

 return existMemStack

end

function Pop(Type[] existMemStack)

begin

 Subract one level of Top pointer

end

function Type Fetch(Type[] existMemStack, int Index)

begin

 return existMemStack[Index]

end

function Display(Type[] existMemStack)

begin

 if Top or Length is Zero then

 begin

 Log the error message as "Empty Memory"

 end

 else

 begin

 for every index in existMemStack

 Print the element in current index

 end

end

The above algorithm explains the implementation details for an automatic resizing of the underlying

storage. In this algorithm, Fetch operation retrieves the required element at a given index within O(1)

execution cycle. It provides the faster lookups of the given data collection. CreateNew operation adds a

new element [11] in the existing collection, if it fits within existMemStack. If Top pointer exceeds

MemBound threshold, newMemStack will be created to hold the updated data set of the collection.

 European Journal of Molecular & Clinical Medicine ISSN 2515-8260

Volume 8, Issue 2, 2021

992

VI. EXPERIMENTATION RESULT

A. System Environment

Research work is simulated in 3.1 GHz Intel Xeon E5-2687W processor having 16 (sixteen) core

processors, 128 GB RAM, 1406 MB cache memory. The array elements are set to off64_t type (8 Bytes)

with the number of dimensions (n), which is varied from 4 to 12.

Data source is downloaded with multiple dimensions like Ticker Date, Open price, High price in a day,

Low price, Closing price, Trade Volume, etc. from NYSE historical data site at

http://eoddata.com/download.aspx

B. Discussion of the result

During the recent analysis of the industry research [3, 5, 16] and proposal, it is clearly demonstrated the

potential advantages of managing memory to process the large amount of data.

In the last paper [1], Hybrid LRU algorithm proved the experimental advantage of execution time

optimization and efficient page/cache hit ratio. Now, the research work is shifted from data storage [4]

and processing to data structure [5, 7]. In this paper, the big data is processed with dynamic array [24]

data structure in the financial market data.

The base work is based on the experimentation results of Hybrid LRU, which leveraged the

prioritization concept on Least Recently Used algorithm. The denominator is marked as Static Structure

[1] in the experimented result table.

Numerator work is designed with the dynamic array structure [4] against the base research on Hybrid

LRU. Enterprise Data Hub persists their data as multidimensional arrays [14] optimized for spatial

querying with the elasticity factor. The rate of improvement with the gaps in static structured Hybrid

LRU is researched here to find out the system optimization degree [16] in the tabular columns.

Experimentations of the result, are measured and summarized in two key factors:

• Storage – Scalability performance

• Speed – Retrieval execution time

In the following sections, the experimental results are elaborated to demonstrate storage [17] and speed

advantages with the underlying parameters, factors, result data, etc.

C. Storage Scalability

Storage utilization is measured between the available data storage space and actual usage storage in an

enterprise. Storage Scalability [2] is how much capacity the storage system can address, manage and

support with acceptable performance, in spite of the lesser physical storage [13].

Data source is experimented between static and dynamic structure with the different set of dimension

size.

Table II: Experimented Result – Storage Scalability

Storage File

Size (GB)

Number of Dimensions

4 6 8 10 12

Static Structure

[1]

100 100 100 100 10

0

Dynamic

Overlay

131

0

128

0

126

5

119

0

73

2

Data points are graphically represented as below:

http://eoddata.com/download.aspx

 European Journal of Molecular & Clinical Medicine ISSN 2515-8260

Volume 8, Issue 2, 2021

993

Fig. 6. Storage Scalability Comparison

The concept of dynamic overlay, is to build the dimensional data structure to persist in a contiguous

memory region by overlaying the holding data. This attribute enables 10 times of improvement on storage

scalability benefits.

D. Execution Time Optimization

Optimized execution time is one of the key factors for any algorithm. On applying the dynamic [14]

overlay data structure in hybrid LRU for Enterprise Data Hub, our algorithm produces below result in

terms of data retrieval time in milliseconds. Program is applied to both static and dynamic overlay data

structure against the different set of data dimensions, sampled from NYSE (New York Stock Exchange)

historical trading data.

Table III: Experimented Result – Data Retrieval Time

Retrieval

Time

(milliseconds)

Number of Dimensions

4 6 8 10 12

Static Structure

[1]

96 113 141 187 50

7

Dynamic

Overlay

12 13 15 29 44

Data points are graphically represented as below:

Fig. 7. Retrieval Time Optimization

The result shows the huge improvement of retrieval execution time between 9 and 10 times. It was

 European Journal of Molecular & Clinical Medicine ISSN 2515-8260

Volume 8, Issue 2, 2021

994

tabulated and depicted in the above diagram.

VII. CONCLUSION

This paper describes an improved version of the earlier Hybrid LRU algorithm, by leveraging the

dynamic overlays data structure. The core logic is leveraging the dynamic overlays against the traditional

way of static data structure. It adds the efficiency to hybrid LRU algorithm in two aspects - storage

scalability and execution time optimization. On comparison of this research work with the traditional

static algorithm, it produces a significant 10 times efficiency on Storage Scalability factor to manage

and scale the existing storage in the most efficient way. Second benefit is to obtain an effective data

retrieval execution time by 9 to 10 times than traditional storage model.

This research paper concludes the technical strength of dynamic overlay concepts, using the

experimental results on hybrid LRU. Therefore, enterprise data hub reaches the final state of the most

efficient approach to execute the big data processing. Serverless computing is the upcoming trend in the

industry. It can be leveraged to improve the infrastructure performance with on demand design for this

research.

REFERENCES

[1] A. Murugan and S. Ganesan, "Hybrid LRU Algorithm for Enterprise Data Hub", International Journal

of Innovative Technology and Exploring Engineering (IJITEE), Volume-9, Issue-1, November 2019.

[2] Alex Mircea Dumitru, Vlad Merticariu, Peter Baumann, “Array Database Scalability: Intercontinental

Queries on Petabyte Datasets”, Proceedings of the 28th International Conference on Scientific and

Statistical Database Management (SSDBM '16,) July 18-20, 2016, pp. 1-5, doi:

10.1145/2949689.2949717

[3] US Patent: https://patents.google.com/patent/US7062761B2/en

[4] Yan, Ling-Ling, Renée J. Miller, Laura M. Haas and Ronald Fagin, "Data-Driven Understanding and

Refinement of Schema Mappings", SIGMOD 2001

[5] K M Azharul Hasan, Tatsuo Tsuji, Ken Higuchi, “An Efficient MOLAP Basic Data structure and Its

Evaluation”, Proc. of 12th International Conference on Database Systems for Advanced Applications

(DASFAA), vol.(LNCS)4443, April 2007,pp. 288-299, doi: 10.1007/978-3-540-71703-4_26.

[6] SRIVASTAVA, SUNEEL KUMAR, AK CHAUHAN, and AKHILESH PATHAK. "THE

DETERMINISTIC MODELING FOR AVAILABILITY AND SURVIVABILITY EVALUATION

OF AVIONICS DISPLAY SYSTEM USING MARKOV MODEL SIMULATION ON MATLAB."

International Journal of Mechanical and Production Engineering Research and Development

(IJMPERD)9.3, Jun 2019, 895-902

[7] Tom White, “Hadoop: The Definitive Guide”, O'Reilly Media, Inc., 3rd Edition, May 2012.

[8] Mehnuma Tabassum Omar - University of Saskatchewan and K. M. Azharul Hasan -Khumla

University, "A scalable storage system for structured data based on higher order index array

Conference Paper", December 2016, [Online]

[9] Priyanka Yadav, Vishal Sharma and Priti Yadav, "Cache Memory – Various Algorithm",

International Journal of Computer Science and Mobile Computing, Vol. 3, Issue. 9, September 2014

[10] Malladi, A. V. I. N. A. S. H., and S. I. R. I. S. H. A. Potluri. "A study on technologies in Cloud-based

design and manufacturing." International Journal of Mechanical and Production Engineering

Research and Development 8.6 (2018): 187-192.

[11] Nathan Beckmann and Daniel Sanchez of Massachusetts Institute of Technology, "Modeling Cache

Performance Beyond LRU", 2016, https://people.csail.mit.edu/sanchez/papers/2016.model.hpca.pdf

https://patents.google.com/patent/US7062761B2/en
https://www.researchgate.net/publication/311317337_A_scalable_storage_system_for_structured_data_based_on_higher_order_index_array
https://people.csail.mit.edu/sanchez/papers/2016.model.hpca.pdf

 European Journal of Molecular & Clinical Medicine ISSN 2515-8260

Volume 8, Issue 2, 2021

995

[12] R. L. Mattson, J. Gecsei and D. R. Slutz, “Evaluation techniques for storage hierarchies,” IBM Sys.

J., vol. 9, no. 2, 1970

[13] M. Qureshi, A. Jaleel and Y. Patt, “Adaptive insertion policies for high performance caching,” in

ISCA-34, 2007

[14] Sk. Md. Masudul Ahsan, K. M. Azharul Hasan,“An Implementation Scheme for Multidimensional

Extendable Array Operations and Its Evaluation”, ICIEIS, Part III, CCIS 253, November 2011, pp.

136–150,doi: 10.1007/978-3-642-25462-8_12

[15] Viet-Trung Tran, Bogdan Nicolae and Gabriel Antoniu, “Towards Scalable Array-Oriented Active

Storage: the Pyramid Approach”, ACM Operating Systems Review, vol.46(1), February 2012,

pp.19-25, doi: 10.1145/2146382.2146387

[16] Jennie Duggan, Michael Stonebraker, “Incremental Elasticity for Array Databases”, In Proceedings

of 2014 ACM SIGMOD International Conference on Management Data, 2014, pp. 409-420,

doi:10.1145/2588555.2588569.

[17] Research and Markets, "Big Data Analytics Industry Report 2020 - Rapidly Increasing Volume &

Complexity of Data, Cloud-Computing Traffic, and Adoption of IoT & AI are Driving Growth",

Global Newswire, Mar 2020

[18] Vivek Seshadri, Gennady Pekhimenko, Olatunji Ruwase, Onur Mutlu, Phillip B. Gibbons, Michael

A. Kozuch, Todd C. Mowry and Trishul Chilimbi, "An Enhanced Virtual Memory Framework to

Enable Fine-grained Memory Management", Carnegie Mellon University, Intel Labs Pittsburgh and

Microsoft Research, 2015

[19] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo, O. Mutlu, P. B.

Gibbons, M. A. Kozuch, and T. C. Mowry, "RowClone: Fast and Energy-eXcient in-DRAM Bulk

Data Copy and Initialization", MICRO, 2013.

[20] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, "Automatically Characterizing Large Scale

Program Behavior", ASPLOS, 2002.

[21] W. Shi, H.-H. S. Lee, L. Falk, and M. Ghosh, "An Integrated Framework for Dependable and

Revivable Architectures Using Multicore Processors", ISCA, 2006.

[22] Sadeg, Saleh A., Khalil I. Al-Samarrai, and Salem M. Rashrash. "Triple Helix Model to Develop

Water and Energy Nexus for Life in Libya." International Journal of Applied and Natural Sciences

(IJANS) 6.4: 163-174.

[23] P. J. Denning. "Virtual Memory", Association for Computing Machinery Computer Survey, 2(3),

1970.

[24] A. Silberschatz, P. B. Galvin, and G. Gagne, "Operating System Concepts, chapter 11. File-System

Implementation", Wiley, 2012.

[25] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. "Multiscalar processors", ISCA, 1995.

[26] G. Merticariu, D. Misev, Peter Baumann, “Measuring Storage Access Performance in Array

Databases", Proc. 7th Workshop on Big Data Benchmarking (WBDB), December 14-15, 2015.

[27] KUMAR, A. SENTHIL, and EASWARAN IYER. "AN INDUSTRIAL IOT IN ENGINEERING

AND MANUFACTURING INDUSTRIES–BENEFITS AND CHALLENGES." International

Journal of Mechanical and Production Engineering Research and Dvelopment (IJMPERD) 9.2

(2019): 151-160.

[28] J. Fotheringham, "Dynamic Storage Allocation in the Atlas Computer including an Automatic Use of

a Backing Store”, Commune ACM, 1961.

[29] J. G. SteUan, C. B. Colohan, A. Zhai, and T. C. Mowry, "A Scalable Approach to Thread-level

Speculation", ISCA, 2000.

[30] B. Wester, P. M. Chen, and J. Flinn, "Operating system support for application-speciVc speculation",

EuroSys, 2011.

[31] LAKSHMI, I. "A COMPETITIVE STUDY ON CLOUDS COMPUTING, SERVICE

ORIENTATION ARCHITECTURE AND WEB SERVICES IN ENTERPRISE NETWORK

APPLICATION." International Journal of Computer Networking, Wireless and Mobile

Communications (IJCNWMC)8.1, Jun 2018, 19-34

 European Journal of Molecular & Clinical Medicine ISSN 2515-8260

Volume 8, Issue 2, 2021

996

[32] S. Kumar, H. Zhao, A. Shriraman, E. Matthews, S. Dwarkadas, and L. Shannon, "Amoeba-Cache:

Adaptive Blocks for Eliminating Waste in the Memory Hierarchy", MICRO, 2012.

[33] L. Jiang, Y. Zhang, and J. Yang, "Mitigating Write Disturbance in SuperDense Phase Change

Memories", Direct Selling News, 2014.

