Volume 08, Issue 02, 2021

Correlation of peak amplitude ECG between leads Based on the condition of the heart

Sabar Setiawidayat¹

¹Electrical Engineering Department, Widyagama University of Malang, Indonesia

¹sabarset@widyagama.ac.id

Abstract: Non-invasive cardiac examination in standard clinic is still using 12-lead electrocardiograph. The results of the examination are presented on ECG paper or on the monitor screen. A normal electrocardiogram on one lead is not necessarily normal for the other lead, because each lead represents a certain part of the heart so that one by one is necessary. This examination takes time so that it can increase the stage of the disease if the patient turns out to be in an abnormal condition. This paper aims to correlate the peak amplitude of each lead to normal and abnormal heart conditions. If it is known that the peak amplitude is correlated between the leads, the other leads do not need to be checked, so that the diagnosis time will be obtained faster. Cardiac biosignal data that has been sampled with a frequency of 250 Hz is a discrete signal that can be stored digitally in a database. 10 samples of normal conditions and 10 samples of abnormal conditions were analyzed using Saphiro-Wilk so that the data were normally distributed. Spearman correlation analysis is used to get peak amplitude correlation between leads. The results showed that for abnormal conditions with a significance of 0.01 there was a correlation between the peak P lead I with leads III and V5, while for normal conditions there was a correlation between peak P lead I and leads V3 and V4. In abnormal conditions there is a correlation between peak R lead II and V6, while in normal conditions there is a correlation between peak R lead I and aVF.

Keywords: correlation, lead, peak amplitude, heart condition, ECG

1. INTRODUCTION:

Non-invasive cardiac examination by standard clinic generally uses a 12-lead electrocardiograph, namely leads I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5 and V6 [1]. The leads represent an electrocardiogram wave divided into 6 leads for the vertical plane (Extremity) and 6 leads for the horizontal plane (Precordial, Chest) [2]. The lead-lead is attached to the surface of the body as shown in Figure 1. The part of the heart examined is shown in Figure 2 and the morphology of the electrical voltage signal versus time of the heart electrical is shown in Figure 3.

Volume 08, Issue 02, 2021

Figure 1. Location of placement of leads on body surface

I Lateral	aVR	V1 Septal	V4 Anterior
II Inferior	aVL Lateral	V2 Septal	V5 Lateral
III Inferior	aVF Inferior	V3 Anterior	V6 Lateral

Figure 2. The part of the heart that is examined

Figure 3. Morphology of the voltage wave against time of the heart electricity

Presentation of electrocardiogram on ecg paper or monitor screen is a graphic display obtained from digital data of voltage amplitude as a function of time. Digital data were obtained from the results of cardiac biosignal sampling at certain frequencies using the Analog to Digital Converter (ADC) [3]. Digital data of examination results that are often used by researchers generally are published by Physionet (Massachusetts Institute of Technology-Boston's Beth Israel Hospital, MIT-BIH). Several authors who have examined the correlation associated with the electrocardiogram are [4], [5], [6], [7], [8], [9], [10], [11]. It appears from these references that no one has used 12-lead digital data for their research. This can be due to the limited digital data published by physionet and the difficulty of obtaining digital data from standard clinic cardiac examinations.

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 08, Issue 02, 2021

This study aims to correlate the digital peak amplitude value on each lead. Data from standard clinic examination for normal and abnormal heart conditions were used as the study sample. It is known that the peak amplitude is correlated between the leads, so that the other leads do not require examination, so that the diagnosis time will be obtained faster.

2. MATERIAL AND METHODS:

Populasi dan Sampel

The object data collection was carried out by standard clinical examinations on 30 people in the Electronica medic laboratory, Faculty of Engineering, Widyagama University, Malang on Friday, August 5, 2019. The criteria for the proposed object were adult men and women (18-55 years), in good health (not sick), married, not disabled and willing to be the object of research (filling in a willingness statement).

Number and Sampling Method

Based on the results of the examination of the patient's object and a letter of willingness to examine, 10 patients with normal conditions and 10 patients with abnormal conditions were selected. In collecting this data, patients were examined by clinical standards using a Discrete Electrocardiograph (ECGd) device at a sampling frequency of 250 Hz for 10 seconds under the supervision of the Cardiovascular Care Unit (CVCU) officer at the Dr. Saiful Anwar Malang Hospital. The variable in this study is time as an independent variable, while the dependent variable is the amplitude of peak P, peak Q, peak R, peak S, peak T and HR. The time variable is expressed as the number of the sampling sequence (N, integer) at a frequency of 250 Hz for which the data scale is the interval scale.

Data Processing and Analysis

The variables in this study were amplitude of peak P, peak Q, peak S, peak R, peak T and HR contained in discrete data records of patient examination results using 12-lead ECGd [12]. The sample used in this study was selected for 2 conditions, namely normal conditions and abnormal conditions. Normal and abnormal conditions correspond to [13].

The duration of the examination is carried out for 10 seconds in a relaxed state. Data normality test used Kolmogorov-Smirnov and correlation analysis of peak amplitude PQRST and HR for each cycle on each lead in 6 cycles using Spearman Correlation.

3. RESULT AND DISCUSSION

In this study, one of the processes to obtain peak amplitude and heart rate (HR) data is shown in Figure 4 for normal patients and Figure 5 for abnormal patient conditions. [14], [15]. Table 1 shows the peak amplitude PQRST results in cycle 1 between normal patient leads and table 2 shows the peak amplitude PQRST results in cycle 1 between patient leads with abnormal conditions. [16],[17].

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260

Volume 08, Issue 02, 2021

Figure 5. Cycle 12-lead cardiogram of 1 patient in a sample of 8 abnormal conditions

Volume 08, Issue 02, 2021

Table 1. PORST results in c	cle 1 among Lead Patients in normal of	condition

Sample	Peak	I	П	ш	aVR	aVL	aVF	VI	¥2	V3	V4	V5	V6
Jampie	p	0.046	.0.025	.0.020	.0.005	0.062	-0.059	.0.245	.0.255	.0.202	.0.116	-0.009	0.056
	0	0,040	0,035	0,000	0,003	0,003	0,030	0,245	0,235	0,200	0,110	0.065	0,030
1	P D	-0,202	-0,313	-0,115	1,550	-0,045	-0,214	1,504	-0,049	-0,145	-0,100	-0,003	9.050
1	n c	0.740	0.709	-0,715	-1,330	1,311	0,230	-1,304	-1,103	1,131	2,909	0,205	2,030
	a T	-0,749	-0,702	0,047	0,720	-0,390	-0,520	-0,355	-1,377	-1,070	-1,500	-0,027	-0,300
	1	1,0%	0,119	-0,072	-1,003	1,333	0,320	-1,402	-0,994	1,299	2,997	2,077	1,917
9	nns p	0,024	0,024	0,024	0,024	0,024	0,024	0,024	0,024	0,024	0,024	0,024	0,024
2	r 0	0,010	0,031	0,050	-0,035	-0,010	0,045	-0,013	-0,130	-0,173	-0,100	-0,172	-0,131
2	V D	-0,100	-0,110	0,030	0,135	-0,105	-0,030	-0,002	-0,255	-0,273	-0,247	-0,237	-0,215
2	n c	0,210	0,992	-0,311	-1,200	0.027	0,200	-0,353	0,700	0.741	1,030	2,371	2,720
2	т	-0,310	-0,347	-0,237	0,420	-0,037	-0,392	-0,770	-1,237	-0,741	-0,030	-0,393	-0,311
2	1	0,300	0,410	-0,021	-0,407	0,200	0,229	0,032	0,010	0,100	0,000	0,140	0,910
2	nns	0,040	0,040	0,040	0,040	0,040	0,040	0,040	0,040	0,040	0,040	0,040	0,010
3	r o	0,109	-0,125	-0,232	0,007	0,171	-0,177	0,042	-0,072	-0,002	-0,111	0,000	-0,094
3	v n	-0,150	-0,390	-0,200	0,205	0,000	-0,331	0,037	-0,170	-0,102	-0,302	-0,112	-0,224
3	n c	0,295	1,370	1,270	-0,932	-0,492	0,142	-0,302	-1,012	1,709	3,310	2,730	0,102
3	a T	-0,270	-0,077	-0,401	0,477	0,003	-0,339	-1,030	-2,170	-2,129	-1,300	-1,057	-0,970
3	I IID.	0,393	0,451	0,030	-0,425	0,170	0,234	0,900	1,939	2,010	1,470	a,920 0.994	1,077
3	nns	0,024	0,024	0,024	0,024	0,024	0,024	0,024	0,024	0,024	0,024	0,024	0,024
4	r	0,038	0,144	0,080	-0,101	-0,014	0,115	-0,204	-0,090	-0,033	-0,080	-0,055	-0,040
4	v.	-0,143	-0,089	0,033	0,110	-0,098	-0,018	-0,057	-0,052	-0,113	-0,196	-0,103	-0,206
4	n c	1,110	1,174	-0,004	-1,470	1,191	0,265	-1,332	-1,002	0,163	1,490	1,901	0,130
4	а т	-0,223	-0,142	0,081	0,182	-0,152	-0,030	-0,399	-0,570	-0,838	-0,031	-0,334	-0,313
4	1	0,467	0,411	-0,073	-0,449	0,261	0,100	-0,370	0,130	0,524	0,454	0,470	0,302
4	nns	0,924	0,924	0,924	0,924	0,924	0,924	0,924	0,924	0,924	0,924	0,924	0,924
5	r	0,015	-0,166	-0,204	0,060	0,110	-0,190	0,234	0,109	-0,107	-0,044	-0,004	0,076
	V D	-0,220	-0,222	-0,002	0,221	-0,109	-0,112	0,405	0,444	0,005	-0,104	-0,140	-0,107
5	n c	1,280	0,879	-0,401	-1,080	0,840	0,240	-0,313	-0,322	0,895	1,425	1,575	1,207
	a T	-0,745	0,339	1,004	0,205	-0,913	0,711	-1,045	-2,330	-1,239	-0,033	-0,307	0,039
	I UDe	0,530	0,321	-0,030	-0,336	0,195	0,143	0,380	0,923	0,001	0,572	0,330	0,331
3	nns p	0,720	0,720	0,720	0,120	0,120	0,120	0,120	0,120	0,720	0,720	0,120	0,120
0	0	0,019	0,132	0,155	-0,065	-0,037	0,145	-0,002	-0,201	-0,150	0,014	-0,109	-0,210
6	P D	-0,090	-0,110	-0,020	1,220	-0,030	-0,000	1,516	-0,209	-0,230	-0,055	-0,191	-0,207
6	n c	0,100	0.476	1,192	-1,550	0,230	0.700	-1,310	-2,120	-1,403	9,502	2,215	1,050
6	т	-0,047	0,470	0.125	0,000	-0,003	0,799	-1,072	-5,341	-5,472	-2,303	0.652	-0,090
6	HR.c	0,790	0,310	0,125	0,300	0,201	0,071	0,107	0,330	0,371	0,751	0,000	0,221
7	p	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100
7	0	-0,147	0,000	0,133	0.962	-0,131	0,001	0,050	-0,473	-0,145	-0,200	-0,540	-0,202
7	R	0,204	1.914	0,003	1.516	0,134	0,129	-1.014	-0,307	0,230	2 162	2 999	2 769
7	s	-0.675	-1.024	-0.350	0.855	-0.158	-0.697	.1 300	-3,100	.2.345	-2,105	-1.960	-1 270
. 7	т	0.429	0.563	0.074	-0.526	0.207	0.310	0.415	1.021	0.814	0.922	0.963	0.906
7	HRs	0.720	0.720	0.720	0.720	0.720	0.720	0.720	0.720	0.720	0.720	0.720	0.720
8	P	0.000	0.158	0.158	-0.079	-0.079	0.158	0.059	-0.151	-0.183	-0.220	-0.100	-0.214
8	0	0.009	-0.545	-0.554	0.268	0.282	-0.549	0.463	0.815	-0.111	-0.192	-0.439	-0.401
8	R	0.313	2.231	1.918	-1.272	-0.802	2.074	-1.276	-3.535	1.450	1.601	2.224	1.134
8	S	-0.330	-0.581	-0.251	0.455	-0.039	-0.416	-0.991	-1.060	-1.399	-1.051	-0.741	-0.534
8	Т	0,326	0,380	0,054	-0,353	0,136	0,217	-0,011	0,687	0,735	0,749	0,462	0,164
8	HRs	0,684	0,684	0,684	0,684	0,684	0,684	0,684	0,684	0,684	0,684	0,684	0,684
9	Р	0,001	-0.244	-0,245	0.122	0.123	-0.244	0.211	-0.012	-0.093	-0.224	-0.147	-0.043
9	0	-0.227	-0,526	-0,299	0,377	0,036	-0,412	0,392	0,251	0,035	-0,245	-0.237	-0.220
9	R	1,283	1,466	0,183	-1,375	0,550	0,825	0,271	0,251	1,922	2,571	2,943	3,451
9	S	-0,460	-0,867	-0,407	0,663	-0,026	-0,637	-0,735	-1,709	-1,385	-1,164	-0,834	-0,832
9	Т	0,664	0,544	-0,120	-0,604	0,392	0,212	0,155	1,691	1,502	1,278	1,247	1,408
9	HRs	0,720	0,720	0,720	0,720	0,720	0,720	0,720	0,720	0,720	0,720	0,720	0,720
10	Р	0,038	-0,051	-0,089	0,007	0,063	-0,070	-0,019	0,171	0,200	0,024	-0,068	-0,424
10	0	-0,129	-0,205	-0,075	0,167	-0,027	-0,140	-0,032	0,270	0,232	-0,002	-0,189	-0.615
10	R	0.716	0,582	-0,134	-0.649	0.425	0.224	0,122	0.737	0,951	1.059	1.299	0,835
10	S	-0.357	-1.277	-0.921	0.817	0.282	-0.110	-0.283	-1.445	-1.622	-1.525	-1.237	-1.362
10	Т	0,275	0,204	-0,070	-0,239	0,173	0,067	-0,019	0,061	0,492	0,034	0,217	-0,277
10	HRs	0,608	0,608	0,608	0,608	0,608	0,608	0,608	0,608	0,608	0,608	0,608	0,608

Volume 08, Issue 02, 2021

Table 2. PQRST res	ults in cycle 1	among Lead	Patients	with abnormal	conditions
--------------------	-----------------	------------	----------	---------------	------------

Sample	Peak	1	Ш	Ш	aVR	aVL	aVF	VI	V2	V3	¥4	¥5	V6
1	Р	-0,238	-0,189	0,049	0,214	-0,144	-0.070	0,210	0.117	-0,038	0,173	-0,119	-0,158
1	0	-0,275	-0,203	0.073	0,239	-0,174	-0,065	0,213	0,115	0,008	0,188	-0.087	-0,149
i	R	1.675	0.196	0.281	-1.815	0.697	1,118	-0.621	-0.857	0.144	-0.459	-0.941	-3.356
i	S	-0.387	-0.316	0.071	0.352	-0.229	-0.123	0.172	0.101	-0.153	0.431	-0.202	0.228
1	т	0.020	0.158	0.137	-0.089	-0.059	0.148	-0.019	-0.111	-0.143	0.350	0.246	0.175
i	HBs	0.572	0.572	0.572	0.572	0.572	0.572	0.572	0.572	0.572	0.572	0.572	0.572
2	Р	0.162	0.219	0.057	-0.190	0.053	0.138	-0.180	-0.060	0.142	0.247	0.304	0.380
2	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.429	0.000	0.343
2	Ř	0.372	0.285	-0.087	-0.329	0.230	0.099	-0.559	-0.322	-0.099	0.344	0.452	0.372
2	s	-0.041	0.045	0.086	-0.002	-0.063	0.066	-0.231	-0.127	-0.143	-0.126	-0.142	-0.139
2	т	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3,429	0.000	3,429
2	HBs	0.424	0.424	0.424	0.424	0.424	0.424	0.424	0.424	0.424	0.424	0.424	0.424
3	р	0.099	0.114	0.015	-0.107	0.042	0.065	-0.081	0.042	0.114	0.100	0.094	0.085
3	0	-0.012	-0.102	-0.090	0.057	0.039	-0.096	-0.135	-0.054	-0.078	0.006	0.168	0.069
3	Ř	1.066	0.388	-0.678	-0.727	0.872	-0.145	-0.106	-0.571	-0.461	0.966	3.087	1,980
3	s	0.535	-0.263	-0.798	-0.136	0.667	-0.531	-1.537	-1.412	-1.909	-0.936	-0.377	-0.063
3	т	-0.086	0.077	0.162	0.005	-0.124	0.119	0.224	0.142	0.196	-0.112	-0.109	-0.111
3	HBs	0.836	0.836	0.836	0.836	0.836	0.836	0.836	0.836	0.836	0.836	0.836	0.836
4	P	-0.151	0.167	0.318	-0.008	0.235	0.243	0.038	0.044	0.082	0.012	-0.064	-0.279
4	0	-0.097	-0.160	-0.064	0.129	-0.017	-0.112	0.066	-0.009	-0.051	-0.069	-0.167	-0.406
4	R	1.514	0.667	-0.847	-1.090	1,180	-0.090	-0.524	-0.693	-0.094	0.592	1.644	1,749
4	s	-0.066	-0.427	-0.361	0.246	0.147	-0.394	-0.411	-1.365	-1,800	-1.814	-1.569	-1.267
4	т	0.327	0.278	-0.049	-0.302	0.188	0.115	-0.324	0.178	0.315	0.536	0.653	0.102
4	HRs	0.868	0,868	0,868	0.868	0.868	0.868	0,868	0.868	0.868	0,868	0,868	0.868
5	P	0.196	0.010	-0.186	-0.103	0.191	-0.088	-0.073	0.082	0.062	0.063	0.132	0.181
5	0	-0.035	-0.211	-0.176	0.123	0.071	-0.194	0.163	0.175	0.197	-0.014	-0.053	-0.053
5	R	0.751	0,795	0.044	-0.773	0.353	0.419	-0.890	-0.142	-2.399	1.428	2,509	1,983
5	S	-0.064	-0.346	-0.283	0.205	0.110	-0.315	0.276	0.296	0.402	-0.124	-0.181	-0.108
5	т	0.222	0.054	-0.168	-0.138	0.195	-0.057	0.104	0.373	0.809	0.713	0.584	0.453
5	HRs	0.668	0.668	0,668	0.668	0.668	0,668	0.668	0.668	0.668	0.668	0.668	0.668
6	Р	0.133	0.405	0.273	-0.269	-0.070	0.339	0.509	0.065	0.116	0.139	0.194	0.656
6	0	-0.122	-0.413	-0.291	0.268	0,084	-0.352	0,109	-0,154	0.049	-0.013	0.009	0,406
6	R	0.690	0.618	-0.073	-0.654	0.381	0.273	-0.435	0.309	0.198	1,998	1.615	1.578
6	S	-0,376	-1.234	-0,859	0,805	0.241	-1.046	-1.478	-0,353	-3,239	-2.427	-1.554	-0.431
6	т	0.256	0,834	0.577	-0,545	-0,161	0,705	0,918	0.847	0,670	0,465	0,290	0,641
6	HRs	0,780	0,780	0,780	0,780	0,780	0,780	0,780	0,780	0,780	0,780	0,780	0,780
7	Р	0,171	0,339	0,168	-0.255	0,001	0.254	-0.726	-0.299	-0,046	-0.022	0.079	0.228
7	0	-0,113	0.093	0,206	0.010	-0,160	0,149	-0,416	-0,158	0,067	-0,004	0.007	0.078
7	R	1,522	0,285	-1.237	-0,903	1.379	-0,476	-1,553	1,607	2,383	1,458	1,190	0,808
7	8	-0,385	-0,273	0,113	0,329	-0,249	-0,080	-0,126	-0,267	-2,209	-1,361	-0,668	-0,051
7	т	0,341	0,190	-0,150	-0,266	0,246	0,020	-0,506	0,804	1,012	0,561	0,515	0,266
7	HRs	0,744	0,744	0,744	0,744	0,744	0,744	0,744	0,744	0,744	0,744	0,744	0,744
8	Р	-0,018	-0,182	-0,164	0,100	0,073	-0,173	-0,121	-0,554	-0,419	-0,466	-0,160	-0,242
8	Q	-0,122	-0,223	-0,101	0,172	-0,010	-0,162	-0,104	-0,537	-0,386	-0,418	-0,125	-0,237
8	R	0,507	0,374	-0,133	-0,440	0,320	0,121	0,172	1,390	2,718	0,216	0,194	0,664
8	S	-0,256	-0,287	-0,031	0,272	-0,112	-0,159	-0,290	-1,003	-1,236	-0,102	-0,690	-0,530
8	Т	0,245	0,148	-0,097	-0,196	0,171	0,026	-0,330	-0,122	0,342	0,279	0,319	0,062
8	HRs	0,572	0,572	0,572	0,572	0,572	0,572	0,572	0,572	0,572	0,572	0,572	0,572
9	Р	-0,040	0,087	0,127	-0,023	-0,083	0,107	-0,013	-0,145	-0,178	-0,656	-0,640	0,018
9	Q	-0,145	-0,014	0,131	0,080	-0,138	0,059	0,070	-0,068	0,565	0,441	0,986	0,106
9	R	1,619	0,145	-1,475	-0,882	0,000	-0,665	-0,849	-0,501	-0,272	0,385	0,449	0,843
9	S	-0,158	0,053	0,211	0,052	-0,184	0,132	0,051	-0,051	0,383	0,592	1,026	0,135
9	Т	0,160	-0,072	-0,232	-0,044	0,196	-0,152	0,058	0,294	-0,150	-0,454	-0,795	-0,064
9	HRs	0,804	0,804	0,804	0,804	0,804	0,804	0,804	0,804	0,804	0,804	0,804	0,804
10	Р	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	3,429	0,000	3,429
10	Q	-0,013	-0,203	-0,190	0,108	0,088	-0,197	0,244	0,165	0,009	-0,118	0,031	0,029
10	R	0,285	0,108	-0,177	-0,196	0,231	-0,034	0,109	0,153	0,096	-0,045	0,160	0,130
10	S	-0,125	-0,303	-0,177	0,214	0,026	-0,240	0,430	0,142	0,063	-0,245	-0,074	-0,106
10	т	1,596	0,152	-0,079	-1,556	0,837	0,719	0,000	0,000	0,226	1,808	0,214	1,785
10	HRs	0.316	0,316	0,316	0,316	0.316	0,316	0,316	0.316	0.316	0,316	0,316	0,316

ISSN 2515-8260 Volume 08, Issue 02, 2021

Correlation test under normal conditions

One of the normality test results for normal condition data is shown in table 3 for descriptive statistics and table 4 for test distribution.

Table 3.	Descrip	otive Stati	stics lead I cycle	e 1 Normal g	roup
	Ν	Mean	Std. Deviation	Minimum	Maximum
P (mV) lead I	60	.03048	.067826	147	.160
Q (mV) lead I	60	15385	.080495	271	.133
R (mV) lead I	60	1.13677	.582376	.105	2.120
S (mV) lead I	60	49220	.193701	845	147
T (mV) lead I	60	.49607	.317192	.224	2.015
hr1 (s)	60	.72230	.164881	.102	.988

-

Table 4.	One-Sample	Kolmogorov-	-Smirnov	Test lead J	[cvcle 1	Normal	group
1 4010 11	one sample	itonnogoro,	Summer,	I cot load I		1,0111141	Stowp

							<u> </u>
		P (mV)	Q (mV)	R (mV)	S (mV)	T (mV)	Hr1 (s)
Ν		60	60	60	60	60	60
Normal	Mean	.03048	15385	1.13677	49220	.49607	.72230
Parameters ^{a,,b}	Std. Deviation	.067826	.080495	.582376	.193701	.317192	.164881
	Absolute	.101	.132	.134	.123	.219	.239
Most Extreme	Positive	.070	.132	.084	.101	.219	.124
Differences	Negative	101	073	134	123	196	239
Kolmogorov-Sn	nirnov Z	.784	1.020	1.040	.954	1.696	1.855
Asymp. Si	ig. (2-tailed)	.570	.249	.229	.323	.066	.082
بنايية المحالية والمحاص	n in Normal						

a. Test distribution is Normal.

b. Calculated from data

A summary of the results of the peak amplitude corelation test for patients in the Normal condition group is shown in table 5a for peak P, table 5b for peak Q, table 5c for peak R, table 5d for peak S and table 5e for peak T.

Table 5a. Summary of peak P correlation test results under normal conditions

					P 1	norm c	onditi	on				
	I	II	III	aVR	aVL	aVF	V1	V2	V3	V4	V5	V6
Ι		1		1	1		5		5	5		
II	Cor		1	1	1	1	5	5				
III		Cor		1	1	1	5	1		5	5	5
aVR	Cor	Cor	Cor		1	1	1					
aVL	Cor	Cor	Cor	Cor		1		1	5	1	1	5
aVF		Cor	Cor	Cor	Cor		5	1			5	
V1	Cor	Cor	Cor	Cor		Cor						
V2		Cor	Cor		Cor	Cor			1	1	1	
V3	Cor				Cor			Cor		1	1	
V4	Cor		Cor		Cor			Cor	Cor		1	5
V5			Cor		Cor			Cor	Cor	Cor		
V6			Cor		Cor					Cor		

Table 5b. Summary of peak Q correlation test results under Normal conditions

		Q norm condition										
	Ι	II	III	aVR	aVL	aVF	V1	V2	V3	V4	V5	V6
Ι		1	1		1	1	1	1				
II	Cor		1	1	1	1	1	1		5		
III	Cor	Cor		1	1	1	1	1		5		
aVR		Cor	Cor		1	1	1	5				
aVL	Cor	Cor	Cor	Cor		1	1	1	5	5		
aVF	Cor	Cor	Cor	Cor	Cor		1	1		5		
V1	Cor	Cor	Cor	Cor	Cor	Cor		1	5			
V2	Cor	Cor	Cor	Cor	Cor	Cor	Cor		1	1		
V3					Cor		Cor	Cor		1	1	
V4		Cor	Cor		Cor	Cor		Cor	Cor		1	
V5									Cor	Cor		
V6												

Volume 08, Issue 02, 2021

Fable 50	e. Summary o	of peak R	correlation	test results	under normal	conditions
			P			

					R	norm o	condit	ion				
	Ι	II	III	aVR	aVL	aVF	V1	V2	V3	V4	V5	V6
Ι			1	5	1	1		5				
II			1		1	1		1		5		5
III	Cor	Cor			1	1		1				
aVR	Cor						1	1			1	5
aVL	Cor	Cor	Cor			1		1				
aVF	Cor	Cor	Cor		Cor			1		5		
V1				Cor	Cor			1	1			
V2	Cor	Cor	Cor	Cor		Cor	Cor					
V3							Cor					
V4		Cor				Cor						5
V5				Cor								1
V6		Cor		Cor						Cor	Cor	

Table 5d. Summary of peak S correlation test results under normal conditions

					S	norm c	condit	ion				
	Ι	Π	III	aVR	aVL	aVF	V1	V2	V3	V4	V5	V6
Ι		5	1		1	1	5	1	1	1	5	
II	Cor		1	1	1	1	5					
III	Cor	Cor		1	1	1	1	5				
aVR		Cor	Cor		1	1			1	5	5	1
aVL	Cor	Cor	Cor	Cor		1	1	1				
aVF	Cor	Cor	Cor	Cor	Cor		1	5				
V1	Cor	Cor	Cor		Cor	Cor		1	1	1	1	1
V2	Cor		Cor		Cor	Cor	Cor		1	1	1	1
V3	Cor			Cor			Cor	Cor		1	1	1
V4	Cor			Cor			Cor	Cor	Cor		1	1
V5	Cor			Cor			Cor	Cor	Cor	Cor		1
V6				Cor			Cor	Cor	Cor	Cor	Cor	

Table 5e. Summary of peak T correlation test results under normal conditions

					Т	norm o	condit	ion				
	Ι	п	ш	aVR	aVL	aVF	V1	V2	V3	V4	V5	V6
Ι		1	5	1	1	1	1	5	1	1	1	1
II	Cor			1	1	1	5		1	1	1	1
III	Cor				1	1	1	1				
aVR	Cor	Cor			1	1	5		1	1	5	1
aVL	Cor	Cor	Cor	Cor			1	1		1	5	1
aVF	Cor	Cor	Cor	Cor				1	1	1		1
V1	Cor	Cor	Cor	Cor	Cor			1		5		
V2	Cor		Cor		Cor	Cor	Cor		1		5	
V3	Cor	Cor		Cor		Cor		Cor		1	1	1
V4	Cor	Cor		Cor	Cor	Cor	Cor		Cor		1	1
V5	Cor	Cor		Cor	Cor			Cor	Cor	Cor		1
V6	Cor	Cor		Cor	Cor	Cor			Cor	Cor	Cor	

Correlation Test Abnormal conditions

One of the normality test results for abnormal condition data is shown in table 6 for descriptive statistics and table 7 for test distribution.

Table 0. L	rescript		les leau I cycle	I AUIIUIIIIai	group
	Ν	Mean	Std. Deviation	Minimum	Maximum
P (mV) lead I	60	.04385	.189528	238	1.097
Q (mV) lead I	60	09685	.116343	411	.123
R (mV) lead I	60	.96827	.570855	.123	1.949
S (mV) lead I	60	17383	.261209	698	.692
T (mV) lead l	60	.23425	.390162	264	1.709
hr1 (s)	60	.63153	.199581	.020	.912

Table 6. Descriptive Statistics lead I cycle 1 Abnormal group

Volume 08, Issue 02, 2021

10010 7. 0	ne bumple no	mogorov	5mmm0,	1051100	u i cycle i	Tunonnu	1 Sloup
		P (mV)	Q (mV)	R (mV)	S (mV)	T (mV)	Hr1 (s)
Ν		60	60	60	60	60	60
Normal	Mean	.04385	09685	.96827	17383	.23425	.63153
Parameters ^{a,,b}	Std. Deviation	.189528	.116343	.570855	.261209	.390162	.199581
	Absolute	.190	.097	.122	.187	.278	.160
Most Extreme	Positive	.190	.053	.122	.187	.278	.086
Differences	Negative	117	097	113	107	191	160
Kolmogorov-Sm	nirnov Z	1.469	.748	.943	1.449	2.150	1.239
Asymp. Si	g. (2-tailed)	.067	.630	.336	.056	.0610	.093

Table 7. One-Sample Kolmogorov-Smirnov Test lead I cycle 1 Abnormal group

a. Test distribution is Normal.

b. Calculated from data.

A summary of the results of the corelation peak amplitude test for patients in the abnormal condition group is shown in table 8a for peak P, table 8b for peak Q, table 8c for peak R, table 8d for peak S and table 8e for peak T.

Table 8a. Summary of peak P correlation test results for abnormal conditions

					P ab	onorm	cond	ition				
	Ι	п	III	aVR	aVL	aVF	V1	V2	V3	V4	V5	V6
I		1	1	1	1		1				1	
II	Cor		5	1		1					5	
III	Cor	Cor			1	1	1	5			1	
aVR	Cor	Cor			1	1	1				1	
aVL	Cor		Cor	Cor		1	1				1	
aVF		Cor	Cor	Cor	Cor			5				
V1	Cor		Cor	Cor	Cor			1			5	
V2			Cor			Cor	Cor		1			
V3								Cor				
V4												1
V5	Cor	Cor	Cor	Cor	Cor		Cor					
V6										Cor		

Table 8b. Summary of peak Q correlation test results for abnormal conditions

		Q abnorm condition											
	I	Π	III	aVR	aVL	aVF	V1	V2	V3	V4	V5	V6	
Ι			1	1	1		1		5				
II			1	1		1				5			
III	Cor	Cor			1	1	1	1					
aVR	Cor	Cor			5	1				5		5	
aVL	Cor		Cor	Cor		1	1	1	5				
aVF		Cor	Cor	Cor	Cor			5					
V1	Cor		Cor		Cor								
V2			Cor		Cor	Cor			1				
V3	Cor				Cor			Cor			1		
V4		Cor		Cor							5	1	
V5									Cor	Cor			
V6				Cor						Cor			

Table 8	Sc. Summary	of peak R	correlation te	est results for	abnormal	conditions

					R ab	norm	cond	ition			R abnorm condition											
	Ι	п	III	aVR	aVL	aVF	V1	V2	V3	V4	V5	V6										
I		1	1	1	1		1	5				1										
II	Cor		5	1		1	1	1		5		1										
III	Cor	Cor			1	1						5										
aVR	Cor	Cor			1	1	1	1		5		1										
aVL	Cor		Cor	Cor		5	1															
aVF		Cor	Cor	Cor	Cor			5				1										
V1	Cor	Cor		Cor	Cor			1	5													
V2	Cor	Cor		Cor		Cor	Cor		1	1												
V3							Cor	Cor		1												
V4		Cor		Cor				Cor	Cor		1	1										
V5										Cor		1										
V6	Cor	Cor	Cor	Cor		Cor				Cor	Cor											

Volume 08, Issue 02, 2021

	S abnorm condition												
					S ab	norm	cond	ition					
	Ι	п	ш	aVR	aVL	aVF	V1	V2	V3	V4	V5	V6	
Ι		1	1	1	1		5				5		
II	Cor		1	1		1	1	1	1	1	1	1	
III	Cor	Cor			1	1	1	1	1	1	1		
aVR	Cor	Cor			1	1		1	1	1	1	1	
aVL	Cor		Cor	Cor		1	1						
aVF		Cor	Cor	Cor	Cor		1	1	1	1	1	5	
V1	Cor	Cor	Cor		Cor	Cor		1	1	1	1		
V2		Cor	Cor	Cor		Cor	Cor		1	1	1	5	
V3		Cor	Cor	Cor		Cor	Cor	Cor		1	1	1	
V4		Cor	Cor	Cor		Cor	Cor	Cor	Cor		1	1	
V5	Cor	Cor	Cor	Cor		Cor	Cor	Cor	Cor	Cor		1	
V6		Cor		Cor		Cor		Cor	Cor	Cor	Cor		

Table 8d. Summary of peak S correlation test results in abnormal conditions

Table 8e. Summary of peak T correlation test results for abnormal conditions

					T ab	norm	cond	ition				
	Ι	Π	III	aVR	aVL	aVF	V1	V2	V3	V4	V5	V6
Ι		1	1	1	1	1	1	1			1	
II	Cor			1	1	1	1	1			1	
III	Cor				1	1	1					
aVR	Cor	Cor			1	1	1	1		1	1	
aVL	Cor	Cor	Cor	Cor			1	1			1	
aVF	Cor	Cor	Cor	Cor				5			1	
V1	Cor	Cor	Cor	Cor	Cor			1	5		1	
V2	Cor	Cor		Cor	Cor	Cor	Cor		1		1	5
V3							Cor	Cor				5
V4												1
V5	Cor	Cor		Cor	Cor	Cor	Cor	Cor				
V6								Cor	Cor	Cor		

The correlation between the amplitude of peak P, peak, Q, peak R, peak S and peak T between the leads in table 5 and table 8 is indicated by the words "Cor" (Correlation) while the significance level is indicated by the number 1 for significance $\alpha = 0.01$ and the number 5 for significance $\alpha = 0.05$

4. CONCLUSIONS

- 1. The peak amplitude P for abnormal heart conditions is indicated by the correlation of lead I with leads III and V5 at a significance of 0.01
- 2. The peak amplitude R for abnormal heart conditions is indicated by the correlation of leads II and V6 at a significance of 0.01
- 3. The peak amplitude P for normal heart conditions is indicated by the correlation between leads I and V3 and V4
- 4. The peak amplitude R for normal heart conditions is indicated by the correlation between lead I and lead aVF

5. REFERENCES

- [1] A. C. Guyton and J. E. Hall, *Textbook of Medical Physiology*, 11th ed. Mississippi: Elsevier Saundes, 2006.
- [2] B. Chia, *Cninical Electrocardiography*, Third Edition. New Jersey: World Scientific, 2000.
- [3] D. B. Foster, *Twelve-Lead Electrocardiography*, Second. London: Springer-Verlag London, 2007.
- [4] S. Danik, C. Cabo, C. Chiello, S. Kang, A. L. Wit, and J. Coromilas, "Correlation of repolarization of ventricular monophasic action potential with ECG in the murine heart,"

Volume 08, Issue 02, 2021

Am. J. Physiol.-Heart Circ. Physiol., vol. 283, no. 1, pp. H372–H381, Jul. 2002, doi: 10.1152/ajpheart.01091.2001.

- [5] A. B. Ramli and P. A. Ahmad, "Correlation analysis for abnormal ECG signal features extraction," in 4th National Conference of Telecommunication Technology, 2003. NCTT 2003 Proceedings., Shah Alam, Malaysia, 2003, pp. 232–237, doi: 10.1109/NCTT.2003.1188342.
- [6] B. Zafrir *et al.*, "Correlation between ST Elevation and Q Waves on the Predischarge Electrocardiogram and the Extent and Location of MIBI Perfusion Defects in Anterior Myocardial Infarction," *Ann. Noninvasive Electrocardiol.*, vol. 9, no. 2, pp. 101–112, Apr. 2004, doi: 10.1111/j.1542-474X.2004.92513.x.
- [7] I. Jekova *et al.*, "Inter-lead correlation analysis for automated detection of cable reversals in 12/16-lead ECG," *Comput. Methods Programs Biomed.*, vol. 134, pp. 31–41, Oct. 2016, doi: 10.1016/j.cmpb.2016.06.003.
- [8] G. S. Nayak, C. Puttamadappa, and A. S. Kamatha, "Statistical Analysis of ECG signals for Arrhythmia Detection," in *4th Kuala Lumpur International Conference on Biomedical Engineering 2008*, vol. 21, N. A. Abu Osman, F. Ibrahim, W. A. B. Wan Abas, H. S. Abdul Rahman, and H.-N. Ting, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 251–253.
- [9] I. Tobore, J. Li, A. Kandwal, L. Yuhang, Z. Nie, and L. Wang, "Statistical and spectral analysis of ECG signal towards achieving non-invasive blood glucose monitoring," *BMC Med. Inform. Decis. Mak.*, vol. 19, no. S6, Dec. 2019, doi: 10.1186/s12911-019-0959-9.
- [10] S. Setiawidayat, "Komparasi Hasil Pemeriksaan Jantung antara perangkat ECGs dan ECGd," 2rd Conf. Innov. Appl. Sci. Technol. Ciastech 2019, vol. 2, no. Inovasi Cerdas dan Teknologi Hijau untuk Industri 4.0, p. 8, Oct. 2019.
- [11] S. Setiawidayat, "Penentuan Posisi Awal dan Akhir Gelombang ECG tiap Siklus menggunakan Algoritma PQRST," *3 Rd Conf. Innov. Appl. Sci. Technol. Ciastech 2020*, vol. 3, no. Peranan Strategis Teknologi dalam Kehidupan Sosial di Era New Normal, p. 8, Dec. 2020.
- [12] S. Setiawidayat, "Peran Amplitudo peak R Elektrokardiogram dalam mendiagnosis Penyakit Jantung," *1st Conf. Innov. Appl. Sci. Technol. Ciastech 2018*, vol. 1, no. Inovasi Iptek untuk mendukung Pembangunan Berkelanjutan, p. 10, Sep. 2018.
- [13] R. H. John, *The ECG in Practice*, Fourth Edition. Notingham UK: Churchill Livingstone An imprint of Elsevier Science Limited, 2003.
- [14] S. Setiawidayat and R. Joegijantoro, "Algorithm for the Representation of Parameter Values of Electrocardiogram," *TELKOMNIKA Telecommun. Comput. Electron. Control*, vol. 16, no. 3, p. 1295, Jun. 2018, doi: 10.12928/telkomnika.v16i3.6934.
- [15] S. Setiawidayat and A. Y. Rahman, "New method for obtaining Peak Value R and the duration of each cycle of Electrocardiogram," in 2018 International Conference on Sustainable Information Engineering and Technology (SIET), Malang, Indonesia, Nov. 2018, pp. 77–81, doi: 10.1109/SIET.2018.8693151.
- [16] S. Setiawidayat, "Software Design For The Representation of Parameter Values of Electrocardiogram 12-Lead," 4th Int. Conf. Adv. Mol. Biosci. Biomed. Eng. ICAMBBE, vol. 4, p. 6, Sep. 2017.
- [17] S. Setiawidayat, "Improved Information on Heart Examination Results Uses a 12-lead Discrete Electrocardiograph," *Eur. J. Electr. Eng. Comput. Sci.*, vol. 4, no. 1, Feb. 2020, doi: 10.24018/ejece.2020.4.1.188.