Online ISSN: 2515-8260

Keywords : KNN


A FRAME WORK TO DETECT BREAST CANCER USING KNN and SVM

RAJESH SATURI; K.V. Sai Phani; Prof.P. PREM CHAND

European Journal of Molecular & Clinical Medicine, 2021, Volume 8, Issue 3, Pages 1432-1438

The main reason of increasing mortality rate among women is the breast cancer. It makes several hours with the less availability of systems to identify the diagnosis of cancer manually. Hence there is a need to develop an automatic system for early detection of cancer. Several researchers have focused in order to improve performance and achieved to obtain satisfactory results. But unfortunately it will be very difficult to detect the cancer in beginning stages because the symptoms may be inappropriate.Therefore, there is a need to determine and acquire a new knowledge to prevent and minimizing the risk of getting effected with cancer. Machine learning (ML) is algorithms are widely used in detecting breast cancer patterns and predict the grading level. Machine learning techniques can be used to classify the stage of cancer, where machine can be trained from past data and build a model so that it can predict the category of new input.In this paper we used K-nearest neighbors (K-NN) and Support Vector Machine (SVM) on the dataset collected from UCI repository to detect breast cancerwith respect to the results of accuracy the efficiency of algorithm is also measured and compared.

AUTISM SPECTRUM DISORDER USING KNN ALGORITHM

Mrs. Surya . S.R; DR. G. Kalpana

European Journal of Molecular & Clinical Medicine, 2020, Volume 7, Issue 9, Pages 1628-1637

Autism spectrum disorder (ASD) is a psychiatric disorder which leads to
neurological anddevelopmental growth of a person which starts in early age and gets
carried throughout their life.It is a condition associated with significant healthcare costs
and early diagnosis can reduce these.Unfortunately, waiting time is lengthy for an ASD
diagnosis and it is cost effective. Due to theincrease in economy for autism prediction and
the increase in the number of ASD cases across theworld is in need of easily implemented
and effective screening methods by GUI results. Toovercome the time complexity for
identifying the disorder advanced technologies can be used suchas machine learning
algorithms to improve precision, accuracy and quality of the diagnosisprocess. Machine
learning helps us by providing intelligent techniques to discover the affectedpatient, which
can be utilized in prediction and to improve decision making. And hence, wepropose the
data set features related to autism screening of adult and child to be used for
furtheranalysis and to improve the classification of ASD cases.