Online ISSN: 2515-8260

Keywords : crops

Identification and Detection of Plant Diseases by Convolutional Neural Networks

A. Iyswariya; V. Ramkumar; Sarvepalli Chandrasekhar; Yaddala Chandrasekhar Reddy; Vunnam Sai Tathwik; V.Praveen Kumar

European Journal of Molecular & Clinical Medicine, 2020, Volume 7, Issue 4, Pages 2200-2205

Agribusiness is the foundation of Indian economy. Plant health and food safety goes hand in hand. The health of green plants is of vital importance to everyone.Plant diseases being an impairment to the normal state of a plant, it interrupts or modifies plants vital functions. The proposed system helps in identification of plant disease and provides remedies that can be used as a defense mechanism against the disease. The database obtained from the Internet is properly segregated and the different plant species are identified and are renamed to form a proper database then obtain test-database which consists of various plant diseases that are used for checking the accuracy and confidence level of the project .Then using training data we will train our classifier and then output will be predicted with optimum accuracy. We use Convolution Neural Network (CNN) which comprises of different layers are used for prediction.CNNs provide unparalleled performance in tasks related to the classification and detection of crop diseases. They are able to manage complex issues in difficult imaging conditions A prototype drone model is also designed which can be used for live coverage of large agricultural fields to which a high resolution camera is attached and will capture images of the plants which will act as input for the software, based of which the software will tell us whether the plant is healthy or not. With our code and training model we have achieved an accuracy level of 78%. Our software gives us the name of the plant species with its confidence level and also the remedy that can be taken as a cure.

Automated Quality Assessment of Crops Using Image Processing and Data Mining Techniques

G Sofiya; SP. Chokkalingam; Sybi Cynthia J

European Journal of Molecular & Clinical Medicine, 2020, Volume 7, Issue 3, Pages 1608-1618

Today, Identification of good quality seeds or crops is a major challenge in India. It is sort out using Image Classification and Data Mining techniques. Picture classification is a favoured strategy for horticulture item identification since the item is unblemished from the cycle. The image is captured and the features are distracted based on their attributes. This is then clustered using K-means and Principal Component Analysis method to assign the grades based on the result.