Online ISSN: 2515-8260

Keywords : Quadratic Discriminant Analysis and Support Vector M


Other applications of medical microwaves – Breast tumour classification

Raquel Conceicao

European Journal of Molecular & Clinical Medicine, 2015, Volume 2, Issue 2, Pages 62-63

This talk addresses the development of imaging techniques for the early detection of breast cancer, based on Ultra Wideband (UWB) radar, a promising emerging technology that exploits the dielectric contrast between normal and tumour tissues at microwave frequencies. Of particular interest in this work are issues related to techniques for classification of potential breast tumours into benign and malignant. This is particularly important given the results from recent studies of the dielectric properties of breast and tumour tissue, which have found that strong similarities exist between the dielectric properties of malignant, benign and normal fibroglandular breast tissue. This creates a more challenging imaging scenario and motivates the development of enhanced signal processing techniques for UWB imaging systems. Tumour growth and development patterns are modelled using Gaussian Random Spheres, using four discrete sizes and four different shapes. 62 Abstracts / New Horizons in Translational Medicine 2 (2015) 55–71 Feature extraction methods including Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Discrete Wavelet Transform (DWT), are used to extract the most relevant features from the detailed Radar Target Signatures of the tumours, which are then classified with a number of different classification techniques: Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) and Support Vector Machines (SVM). In addition to these techniques, a number of different multi-stage classification architectures are considered. The feature extraction and classification algorithms are evaluated for both homogeneous and heterogeneous breast tissue models, for a range of different tumour sizes and shapes.