The ability of astaxanthin-rich *Haematococcus pluvialis* algal extract on preventing harmful effects of \(\text{H}_2\text{O}_2 \) on human fibroblast cells *in vitro*

Authors:
Quan Minh To\(^1,2,\ast\), Dieu Quang Tran\(^1\), Tuyet Thi Vy Le\(^1\), Ha Le Bao Tran\(^1\),
Long Thanh Le\(^2,3,\ast\)

Affiliations:
\(^1\) University of Science, Vietnam National University of Ho Chi Minh city, Hochiminh city, Vietnam
\(^2\) Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
\(^4\) Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam

Corresponding author:
1. Quan Minh To
University of Science, Vietnam National University of Ho Chi Minh city, Hochiminh city, Vietnam.
Mailing address: 227 Nguyen Van Cu, Ward 4, District 5, Hochiminh city, Vietnam
Email: tomquan@hcmus.edu.vn Telephone: (+84) 908761697

2. Long Thanh Le
Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
Mailing address: 9/621 Hanoi Highway, Linh Trung Ward, Thu Duc District, Ho Chi Minh City
Email: longlt@itb.ac.vn Telephone: (+84) 365167243

ABSTRACT
This study aimed to determine the ability of astaxanthin-rich *Haematococcus pluvialis* algal extract (AE) on preventing adverse effects of \(\text{H}_2\text{O}_2 \) on human skin fibroblast cells. A *Haematococcus pluvialis* strain obtained from Vietnam was used as a source of astaxanthin. hF cells were cultured in DMEM/F12 medium supplemented with AE 0, 10, 25, 50 μg/ml for 7 days. WST-1 assay results showed that AE 10-50 μg/ml was not poisonous and didn’t have any negative effects on cell proliferation. hF cells were pre-treated with AE (0, 10, 25, 50 μg/ml) for 24 hours prior to \(\text{H}_2\text{O}_2 \) treatment (200 μM, 120 minutes). The results showed that AE protected hF cells: reduction of G0/G1 phase cells in cell populations (16.08 – 21.52%), senescence-associated β-galactosidase – positive cells (28.9 – 40.8%), and maintenance of cell proliferation, nuclear area. AE 10 μg/ml is the optimal concentration in this study. In conclusion, AE has been shown to have the ability to protect fibroblasts from the adverse effects of \(\text{H}_2\text{O}_2 \).
Keywords: Astaxanthin, Haematococcus pluvialis, cell senescence, skin aging, hydrogen peroxide.

1. INTRODUCTION

Haematococcus pluvialis (Chlorophyceae, Volvocales, Haematococcaseae) is unicellular freshwater microalgae. It was considered to be the best natural commercially source of astaxanthin, a red xanthophyll carotenoid [1, 2]. The life cycle of H. pluvialis is composed of 4 distinguished stages: macrozooids, palmella, hematocysts and microzooids (Figure 1). Macrozooids are spherical or pear shape motile green cells with two equal flagella. Macrozooid cells predominate under favorable culture conditions. When exposed to unfavorable, the cells begin losing their flagella, expanding cell size, thickening cell wall, and synthesizing secondary carotenoids (mainly astaxanthin) [3-6].

Astaxanthin (3,3'-dihydroxy-β,β-carotene-4,4’-dione), consisting of the two β-ionone–type rings at both ends and one polyene chain, is one of the most effective antioxidants [7, 8]. Its potential antioxidant is more potent than vitamin C, β-carotene, canthaxanthin, zeaxanthin, α-tocopherol [1, 7, 9]. In the cosmetic field, astaxanthin was used to neutralize or quench reactive oxygen species (ROS) produced inside or outside the cells [10, 11]. ROS can be generated by cellular metabolic processes or environmental stress such as ultraviolet radiation, heat exposure...[12, 13] ROS can cause irreversible damage to DNA, the extracellular matrix (collagen, elastin, ...), and up-regulate proteolytic enzymes (MMP-1, MMP-3, MMP-9, NEP). These modifications lead to cell death, senescence, and aging skin [14-17]. Astaxanthin was proved to prevent DNA damage, reduce the expression and activity of MMP-1 and NEP in UV – induced fibroblast in vitro [18, 19]. However, the protective ability of astaxanthin against ROS on fibroblast is limited. So, in this study, we aim to extract astaxanthin from a new Vietnamese H. pluvialis strain (astaxanthin-rich algal extract, AE) and evaluate its effectiveness on cellular protection against H$_2$O$_2$.

2. MATERIALS AND METHODS

2.1. Algal extraction

The Vietnamese H. pluvialis algae with ASX concentration of 2.9 % dry mass was used in this experiment. The biomass of H. pluvialis was provided from our previous study. Astaxanthin was extracted according to Sarada (2006) with some modifications [20]. The mature H.pluvialis cyst cells were treated by HCl 2M for 2 minutes, rinsed 2 times by distilled water, freeze-dried, and stored at -20°C. Then, the algal cells were ground, and extracted in acetone with a ratio of 1 mg biomass: 20 ml acetone for 2 hours. Astaxanthin concentration was evaluated by HPLC [21].

2.2. In vitro proliferative induction test

Human dermal fibroblast cells (hF) at passage 4 were used in this experiment. The cells were maintained in cell culture medium (CC medium) containing DMEM/F12, 10% fetal bovine serum (FBS), 1% antibiotics in 37°C, 5% CO$_2$. The hF cells were seeded into a 96-wells plate at a density of 2x103 cells/well. After 24 hours, the cells were cultured in CC medium supplemented with algal extracts 5, 25, or 50 μg/ml (n=9). The final DMSO concentration, which was used to dissolve AST, was 0.5%. CC medium or CC medium containing 0.5%
DMSO was used as blank or control. After 1, 4, or 7 days of culture, WST-1 assay was conducted to determine proliferation in each group [22]. OD values were recorded at wavelength 440 nm.

2.3. In vitro evaluation of the protective ability of AST against H$_2$O$_2$-induced oxidative stress

The protective ability of AE against H$_2$O$_2$-induced oxidative stress was tested on hF cells. hF cells were treated in turn by AE and by H$_2$O$_2$ for 2 hours. The experiment was divided into 5 groups: control, H2O2, AE 5, AE 25, and AE 50 as table 1. hF cells at passage 10, approximately 80-85% confluence were pre-treated with CC medium supplemented with AE (0, 5, 25, or 50 μg/ml) for 1 day. One day later, the cells were treated by 200 μM H$_2$O$_2$ for 2 hours [23]. Then, the cells were seeded on 96-well plates (10x103 viable cells/well) and cultured in CC medium to check the cell’s proliferative ability, cell phase, nuclear area and senescence-associated b-galactosidase expression (SA-gal). The proliferative ability was tested by WST-1 assay on day 1, 4, or 7 after seeding. On day 1, the cell phase ratio, the nuclear area was tested by DAPI staining and calculated by Cytell microscope. The SA-gal expression was checked by a senescence staining kit (Sigma) on day 2.

2.4. Statistical analysis

Statistical analysis was performed using one-way ANOVA where p<0.05 was considered statistically significant.

3. RESULTS

3.1. Algal extraction

The red mature cyst cells (aplanosphores) have round shapes with average diameter of 64 ± 15.1 μm. After extraction, astaxanthin was dissolved into the solvent, moved outside and biomass, including ruptured cell walls, turned to white. Based on the HPLC method, astaxanthin recovery was 93.5 ± 1.8% and accounted for 9.8 ± 2.6% of AE powder’s weight (Figure 2).

3.2. Proliferative induction test in vitro

hF cells were cultivated in medium supplemented with a range of algal extraction (0, 5, 25 or 50 μg/ml) (n=9) for 7 days. OD values of the WST-1 assay were shown in figure 3. The OD values of all groups on the same day were not statistically different (day 1, 4, or 7) (p>0.05). There were increases in OD values between experiment days of all groups from day 1 to day 7. Moreover, the Giemsa staining showed that there was no change in cell morphology between these groups (Figure 5). It was concluded that algal extract was not poisonous to cells and didn’t affect cell proliferation.

3.3. In vitro evaluation of protection activity of AE

H$_2$O$_2$ is a powerful ROS which make cell death or cell senescence. In this study, hF cells were pre-treated with AE before contacting to H2O2. The results were shown in table 2 and figure 5-8.

The results were shown in table 2 and figure 5-8. In the H$_2$O$_2$ group, after one day, the ratio of G0/G1 phase increased significantly from 5.72 ± 0.63% (control group) to 85.93 ± 4.03% of cells (p<0.05). From day 1 to day 7, OD values of WST-1 assay stayed constant (p>0.05). Moreover, there was the enlargement of cell nuclear size (246.2 ± 5.49 μm2) and cell size
which shares hallmarks of physiological senescence: cell cycle arrest, and existed in 2 different forms: free (4.4%) and esterified, in which ester form is the predominant part (data not shown) as compared to control. The percentage of SA-gal-expressed cells (a biomarker of cell senescence) in control group, 51.5 ± 6.09%, is the highest in this experiment (p < 0.05). It was concluded that treatment of 200 μM H2O2 for 2 hours triggered These results showed that H2O2 inhibited cell proliferation, increased of nuclear area, cell size, and triggered SA b-Gal expression. They are signs of premature cellular senescence. In experiment groups, the cells were sequentially pre-treated with AE (5, 25, 50 μg/ml) for 24 hours and exposed to H2O2. The ratio of G0/G1 groups in these groups were lower than H2O2 group and equal to control (p<0.05) (59.03 - 66.07%). The WST-1 assay showed that OD values in these group increased steadily from day 1 to day 7 (p<0.05) although they were smaller than control (p<0.05). DAPI staining showed nuclear area in all AE groups was smaller than H2O2 and larger than control (p<0.05). The ratio of SA-gal-positive cells was lower than the control group (p<0.05). Based on these results, it was concluded that AE suppressed the negative effects of H2O2 on hF cells in a dose-dependent manner. AE 25 μg/ml was the best concentration on protecting hF cells from oxidative stress.

4. DISCUSSIONS AND CONCLUSIONS

ROS is one of the main reasons for skin aging. It can oxidize and alter DNA, protein and active skin aging-related signalling pathways: MAPK pathway [24, 25]. In many studies, H2O2, a powerful oxidizing agent, has been the most widespread inducer of cellular senescence in vitro, which shares hallmarks of physiological senescence: cell cycle arrest, senescence-associated b-galactosidase activity, increase of cell size [23, 24, 26, 27]. Astaxanthin is a powerful antioxidant that can neutralize or quench free radicals such as singlet oxygen, hydroxyl peroxide... Due to its unique structure: polar - nonpolar – polar, astaxanthin can permeate and protect cell membranes from free radicals [8, 28]. Many kinds of research prove the astaxanthin’s effects on protecting fibroblast against UV irradiation in vitro [18, 19, 29]; however, little research checks on its ability to prevent oxidative stress into fibroblast [23, 30]. Haematococcus pluvialis is one of the best natural sources of astaxanthin that contains the maximum astaxanthin concentration of 5% dry weight [4, 10]. In Vietnam, Dang Thi Diem Hong first isolated a H. pluvialis strain in the North of Vietnam. This strain can reach the concentration of 0.95 x10^6 cells/ml in a modified RM medium after 15 days of inoculation [31]. Our previous study showed that astaxanthin occupied 2.9% of dry weight and existed in 2 different forms: free (4.4%) and esterified, in which ester form is the predominant part (data were not shown). Moreover, astaxanthin is a potent antioxidant and its TEAC value was 0.126 mmol Trolox/g extract, closed to Zuluaga’s in ABTS assay [27].

In this study, we continued to investigate its protection ability on human skin fibroblast. AE was extracted according to our previous study. Astaxanthin accounted for 9.8% of algal extract mass. When exposed to CC medium containing AE in ranges of 10-50 μg/ml, hF cells still proliferated from day 1 to day 7 (p<0.05) and remained their normal elongate shape. After treated by H2O2, hF cells expressed some features of replicative senescence: most cells were arrested in G0/G1 phase (85.93 ± 4.03%), without growth (OD values of WST-1 of day 1, 4, 7 were similar, p>0.05) and increases in the nuclear area, accelerated expression of SA-gal [26, 32]. So, it can be concluded that H2O2 caused oxidative stress on hF cells with some signs which are similar to cellular senescence’s. In AE groups, cells were pre-treated with AE
concentrations of 10-50 μg/ml and exposed to H₂O₂ in turn. The results showed that AE 10-50 μg/ml suppressed H₂O₂-induced oxidative stress: maintained cell growth, reduced of SA-gal, retained cellular morphology. So, we conclude that AE 10-50 μg/ml could have preventive effects against H₂O₂-induced oxidative stress on fibroblasts in vitro and the effectiveness of these groups were equivalent.

5. CONCLUSION
AE, extracted from the Vietnamese H. pluvialis, inhibited harmful impacts from H₂O₂ in vitro.

6. ACKNOWLEDGEMENTS
This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant number C2018-18-20.

7. CONFLICT OF INTEREST
Authors declared that they do not have any conflicts of interest.

REFERENCES
Table 1: Groups in protective ability of AE against H₂O₂ treatment

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>H₂O₂</th>
<th>AE 10</th>
<th>AE 25</th>
<th>AE 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC medium (0.5% DMSO)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>AE concentration</td>
<td>0 μg/ml</td>
<td>0 μg/ml</td>
<td>10 μg/ml</td>
<td>25 μg/ml</td>
<td>50 μg/ml</td>
</tr>
<tr>
<td>H₂O₂ treatment</td>
<td>None</td>
<td>Yes</td>
<td>Yes</td>
<td>µg/ml</td>
<td>µg/ml</td>
</tr>
</tbody>
</table>

Table 2. Results of protective test of AE. a, b, c, d: statistically significant in the same column.

<table>
<thead>
<tr>
<th>Groups</th>
<th>The ratio of G0/G1 phase (%)</th>
<th>Cell nuclear area (μm²)</th>
<th>The ratio of SA-gal-expressed cell (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Con.</td>
<td>60.59 ± 5.69a</td>
<td>205.8 ± 7.4a</td>
<td>2.54 ± 1.27a</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>85.93 ± 4.03b</td>
<td>246.2 ± 5.5b</td>
<td>51.58 ± 6.09b</td>
</tr>
<tr>
<td>AE 10</td>
<td>66.07 ± 7.18a</td>
<td>232.2 ± 5.0c</td>
<td>37.62 ± 4.62c</td>
</tr>
<tr>
<td>AE 25</td>
<td>64.33 ± 3.92a</td>
<td>224.8 ± 3.3c</td>
<td>27.22 ± 3.54c</td>
</tr>
<tr>
<td>AE 50</td>
<td>59.03 ± 3.92a</td>
<td>229 ± 3.2c</td>
<td>31.78 ± 4.50d</td>
</tr>
</tbody>
</table>

Figure 1. Stages of Haematococcus pluvialis [4]. A: Macrozooid, B: Pamella, C: hematocyst.
Figure 3. OD values of WST-1 assay in proliferation test. a,b,c: statistically different.

Figure 4. Giemsa staining results of hF cells at day 7 in proliferative test. A, B, C, D, E: con., H_{2}O_{2}, AE 5, AE 25, AE 50 (x100).
Figure 5. OD values of all groups in protective ability of algal extract
Figure 7. Cell phase ratio determined by Cytell. A, B, C, D, E: con., H\textsubscript{2}O\textsubscript{2}, AE 5, AE 25, AE 50 (x100).

Figure 8. SA-b Gal expression of the cells. A, B, C, D, E: con., H\textsubscript{2}O\textsubscript{2}, AE 5, AE 25, AE 50 (x100).