HEPATOPROTECTIVE EFFECT OF \textit{d}-LIMONENE AGAINST ADRIAMYCIN INDUCED HEPATOTOXICITY IN EXPERIMENTAL RATS

\textsuperscript{1}Dr. Indumathiselvanathan, \textsuperscript{2}Dr. Sivasakthi Arumugham, \textsuperscript{3}S.M. Fazeela Mahaboob Begum
\textsuperscript{1,2,3} New Prince Shri Bhavani Arts And Science College, Medavakkam, Chennai, Tamil Nadu, India

\textbf{ABSTRACT}

\textbf{Objective:} Monoterpenes play an essential role to fight against various diseases. Among the various monoterpenes an efficient \textit{d}-Limonene plays a fundamental role to fight against hepatotoxicity caused by cancer chemotherapy treatment. Hence the presence study is to evaluate hepatoprotective function of \textit{d}-limonene against adriamycin induced hepatotoxicity.

\textbf{Methods:} Male albino Wistar rats were administrated with ADR (15mg/Kg body weight) in six equal injection, and the protection efficacy of \textit{d}-limonene (100mg/Kg body weight) was examined with reference to tissue AST level and the pathological studies was examined by microscopic study.

\textbf{Results:} Rats treated with ADR results in elevated level of liver AST marker enzymes, whereas the level of AST was controlled when administrated with \textit{d}-Limonene. However Histopathological proof added more protective role of rats treated with \textit{d}-limonene against hepatotoxicity.

\textbf{Conclusion:} ADR administration of 15mg/Kg body weight of rats increase the level of hepatotoxicity by increasing the marker enzyme activity and show severe morphological changes. The final outcome from our result suggests that \textit{d}-limonene (100mg/Kg body weight) a vibrant monoterpenic act as latent hepatoprotective negotiator by attenuating ADR induced hepatotoxicity.

\textbf{Keywords:} Adriamycin, \textit{d}-limonene, AST, Histopathology, Hepatotoxicity

\textbf{INTRODUCTION}

Since 1960’s doxorubicin or Adriamycin (ADR) an anthracycline anti-neoplastic drug widely used in treatment of major route of cancer, including Osteosarcoma [1], Soft tissue Sarcomas [2], Breast cancer [3], gastric, liver [4], esophageal carcinomas [5], Hodgkin’s lymphomas and various other cancers. However, rate limiting effect of ADR on treating cancer was hampered by various side effects on chemotherapy strategies like toxicity in central nervous system [6], nephrotoxicity [7], hepatotoxicity and most awful condition leads to cardiomyopathy and congestive heart failure [8]. Various reports suggest cardiac damage and hepatotoxicity caused
by ADR prion to be higher compare to other side effects [9]. ADR mediated hepatic damage is probably by the formation of free radicals causes oxidative stress and damage. However the exact mechanism for ADR causing hepatotoxicity remains to be unclear but it is believed free radical formation [10]. One of the best monocyclic monoterpened-limonene is highly present in all essential citrus fruits and citrus oil with lemon aroma. Recent studies reveals administration of d-limonenne shows low toxicity after repeated dose upto one year [11]. Administration of d-limonenen gradually inhibits lipid peroxidation and prevents free radical damage [12, 13]. It also reported d-limonenen have various important biological properties like anti oxidant potential [14, 15], anti-inflammatory [16] and chemo preventive properties against numerous types of cancer [17, 18]. The purpose of the study was intended to test the hypothesis whether a nutritional strategy like chronic administration of d-limonene could prevent ADR induced hepatotoxicity and hamper the free radicals production in albino rats.

Fig. 1: a) Citrus Fruits and b) Structure of d-Limonene (C_{10}H_{16})

MATERIALS AND METHODS

Chemicals

d-limonene and Adriamycin were purchased from Sigma-Aldrich (St Louis, MO, USA), and all other chemicals used for biochemical estimation were used analytical grade.

Animals

Adult male albino Wistar rats of (140-160g) were used for the study. Rats were kept in polypropylene cages and maintain under standard temperature of (25±2°C) in large air conditioned room, fed with standard chow. The animals had free access to water. All the experiments were designed and conducted according to the ethical norms approved by animal
ethics committee guidelines University of madras with approved number (IAEC No: 35/03/2014).

**Experimental design**

The experimental animals were divided into four groups, each group comprising of six animals.

Group I  : Normal control rats fed with standard diet and drinking water for 6 weeks

Group II : Adriamycin (15mg/kg body weight) was dissolve in normal saline and given six equal injections via, intra peritoneal.

Group III : Rats treated with $d$-limonene alone (100mg/kg body weight) was dissolved in corn oil and administrated intra gastric gavage for period of four weeks.

Group IV : Rats pre-treated with$d$-limonene (100mg/kg Body weight) was dissolved in corn oil and administrated intra gastric gavage for period of four weeks and two weeks prior to adriamycin administration.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Weeks</strong></td>
<td>Group I</td>
<td>Group II</td>
<td>Group III</td>
<td>Group IV</td>
<td></td>
</tr>
</tbody>
</table>

- **0.9% Nacl**
- **d-Limonene (100mg/Kg bw)**
- **ADR (15mg/Kg bw)**
- **Normal diet**
- **Time of sacrifice**
Fig. 2: Schematic representation of experimental design

Preparation of tissue sample

The portion of liver was rinsed completely in phosphate buffer saline of 0.05M at PH 7.4 by using tissue homogenizer (10%) whole homogenate. Obtained homogenate was centrifuged by using semi centrifuge at 8000 rpm for the period of 30 mins. Separated tissue supernatant was finally used for the analysis of enzyme markers.

Morphometric studies

After sacrifice, the portion of liver tissue were removed surgically and rinsed completely by using normal physiological cold saline. The portion of liver tissue were fixed in 10% of buffered formalin and washed completely in 70% alcohols and embedded in paraffin wax. Cut the paraffin sections at 5µm thickness and stained with H & E for morphological assessment under light microscope.

Statistical Analysis

Results were analyzed by mean ±S.D values significance between the groups was statistically performed by one way ANOVA followed by Tukey’s multiple comparisons.

Statistical comparison was followed by using graph pad prism software. P value is significantly less than 0.05.

RESULTS

Effect of d-limonene on liver marker

Fig. 3 The tissue liver marker AST of control and experimental group of rats. The animals treated with ADR showed significantly increased levels of AST when compared to control animals (p<0.05). Animals treated with d-limonene failed to induce the level of enzymes in significant ranges when compared to ADR treatment animals comparatively. Drug control animals did not show any changes and remain same as control group.
Fig. 3: Level of AST tissue marker in the liver of control and experimental group of rats.

Effect of \(d\)-limonene on macroscopic finding

Fig. 4 (ADR induced) liver toxicity as a sign of enlarged and decolourisation of liver after two weeks. (ADR+\(d\)-limonene) treatment group of animals show greatly reduce in shape and colorization of liver when compared to ADR induced group. Whereas, no abundant changes were observe in group of control and \(d\)-limonene alone treated animals.

Fig. 4: Represents the macroscopic appearance of liver on control and experimental group of rats

Effect of \(d\)-Limonene on Histopathological studies

The histology of the heart tissue sections, stained with hematoxylin and eosin (H&E) was assessed under a light microscope. Control hepatic tissue (Fig. 5A) show increase number of polygonal cells and well-shaped rounded nuclei with eosinophilic cytoplasm. The hepatic lobes appeared lobe formed of hepatocytes with normal architecture. In contrast, ADR treated animals (fig. 5B) showed massive pathological disarrangement, focused mainly on degeneration of hepatic cords with congestion in central vain with kupffer cells proliferation leads to destroyed cells and appear to be damaged architecture, compared to control animals. In case of rats treated with \(d\)-Limonene (fig. 5D) shows less degenerated nuclei with normal hepatocytes with complete
central and portal vein. In addition, most damages were followed by increased number of necrotic and apoptotic hepatocytes with dilation in blood sinusoids and hepatocytes degenerated nuclei.

![Fig. 5: Photomicrographs (40x) obtained from 5. A. Control group, 5. B. ADR group, 5. C. d-Limonene alone group and 5. D. ADR+d-Limonene group](image)

**DISCUSSION**

ADR a wide used chemotherapeutic drugs used for treating different haematological and solid tumors. However hepatotoxicity is highly limited by dose dependent toxicity in cancer treatment condition [19]. The exact mechanism for ADR mediate toxicity in various organs was mediated by formation of free radical leads to oxidative stress [20]. Oxygen derived free radicals causes’ severe lethal damage to plasma membrane and disturbs assembly of cytoskeleton [21].

Oxidative stress redox mediating free radical production [22], mitochondrial DNA damage [23]. Calcium a dironhomeostasis [24, 25]. ROS and RNS are generated by various endogenous systems by different physical and pathological conditions. Due to various oxidative stresses the level of free radical shoot up to abnormal condition leads to various hepatological diseases.
To regulate the over whelm of free radicals, anti-oxidant is necessary to regulate the physiological functions. Hence external source of anti-oxidant can pallitate the therapeutic strategies by controlling oxidative damage [26].

Liver is the major target site for overall metabolism and Aspartate transaminase is one of the best marker enzymes for liver damage. ADR administrated gradually decrease the activity of Aspartate transaminase level and increase the level of lipid peroxidation is highly noticeable that demonstrate the changes in cellular damages. Elevated serum alanine transaminase influence ADR toxicity, which moderately increase the outflow of these enzymes from injured liver cell.

However treatment with \(d\)-limonene (100mg/Kg body weight) gradually decreases the negative potential of ADR treated animals thus provide extensive defence against hepatic injury. More over the histopathological finding revealed that animals treated with (100mg/kg) of \(d\)-limonene has protected hepatic tissues from necrosis induced by ADR. So it has finally revealed that the animals pre-treated with \(d\)-limonene cosseted hepatic tissues against ADR induced hepatic toxicity in experimental group of animals.

**Conclusion:**

Finally, the present study reveal that \(d\)-limonene plays an important role in defending against ADR induced hepatic damage or hepatotoxicity by ameliorating free radicals andiron chelating properties by scavenging lipid alkoxyl and peroxyl radical. On the basic of these finding it suggest the subsequest level of \(d\)-limonene prior to ADR will slowly reduce the impairment to live in cancer chemotherapy. Further clinical studies are abundantly requisite to find the beneficial and therapeutic functions of \(d\)-limonene in cancer treatment patients.

**Conflict of interest**

None declared.

**References**


