Evaluation of the children suffering from various co-morbidities in severe acute malnutrition with unexpected dyselectrolytemia: an observational study

Dr. Krishna Keshav¹, Dr. Sushil Kumar Pathak², Dr. Saroj Kumar³, Dr. Binod Kumar Singh⁴

¹Senior Resident, Department of Paediatrics, Nalanda Medical College and Hospital, Patna, Bihar, India.
²Assistant Professor, Department of Paediatrics, Nalanda Medical College and Hospital, Patna, Bihar, India.
³Assistant Professor, Department of Paediatrics, Nalanda Medical College and Hospital, Patna, Bihar, India.
⁴Professor and HOD, Department of Paediatrics, Nalanda Medical College and Hospital, Patna, Bihar, India.

Corresponding Author: Dr. Sushil Kumar Pathak

Abstract

Background: Co-morbidities are the reason behind high morbidity and mortality in SAM children. There is lack of literature regarding co morbidity pattern in SAM children.

Aim: The aim of the study to evaluate the spectrum of co-morbidities in severe acute malnutrition with unexpected dyselectrolytemia in diarrhea.

Material and Methods: The study was an observational study which was carried in the Department of Paediatrics Nalanda Medical College and Hospital, Patna, Bihar, India for 8 months. Total 120 Children below 6 year age were included in this study. Various co-morbid conditions in study population were identified. All the laboratory examination was done with standard method.

Results: Total 120 cases were included in study of which 95% were associated co-morbid conditions in SAM. Majority of children with SAM were having co-morbidity in the form of Anaemia (86.67%), Diarrhoea (64.17%) followed by pneumonia (28.33%), Rickets (25.83%), Tuberculosis (15.83%), Otitis media (13.33%), UTI (10.83%), Celiac (5.83%), Hypothyroidism (1.67%), & HIV (0.83%). 77 (64.17%) SAM children presented with diarrhea of which 76 had dysnatremia in the form of Hyponatremia in 76 cases (63.33%) & Hypernatremia in 2 cases No statistically significant difference was found with hyponatremia in diarrheal or non-diarrheal cases of SAM (P value of 0.09). It was found that 25% SAM children were having hypokalemia. Hypokalemia was found in 15.83% of diarrheal cases & 9.17% in non-diarrheal cases. A statistically significant difference was found with hypokalemia in SAM (P value of 0.029) between Diarrheal & Non diarrheal cases.

Conclusion: Co-morbidities identification and treatment in SAM children is key step in reducing morbidity and mortality associated with SAM.

Keywords: Co-morbidities, NRC, Severe Acute Malnutrition, Hypothyroidism, Celiac disease, Diarrhea, HIV

Introduction

Diarrhoea still continues to be a major cause of hospitalization and death is under fives and has severe economic consequences. Diarrhoea is the second leading cause of death in children under five years old. Every year diarrhoea kills around 525000 under five children.
Globally there are nearly 1.7 billion cases of childhood diarrhoea every year. It is also the major cause of Malnutrition in under fives. From 2000 to 2016 the toll of annual number of deaths from diarrhoea in under fives had decreased by 60%. May more could have been saved through simple interventions. In malnutrition various abnormalities occur in body electrolytes which become more pronounced with diarrheal incidence since electrolytes conduct an electrical current, helps to balance pH and facilitate the passage of fluid between and within cells through process of osmosis imparting in regulation of the function of neuromuscular, endocrine and excretory systems. Children with SAM are categorized into “complicated and uncomplicated cases” based on clinical criteria. SAM children with complications require inpatient management and those without complications can be treated on a community basis. World Health Organization (WHO) states this as a strong recommendation with low-quality evidence. As per the WHO, serum electrolytes are measured and supplemented (potassium and magnesium) only in SAM children with complications. SAM children without complications are managed in community with Ready to Use Therapeutic Food (RUTF) which is enriched with minerals and micronutrients. In our country, as RUTF is not available, children are advised home-based energy dense food along with micronutrient supplements. Hence, their diet may still be deficient in minerals. Diarrhoea and pneumonia accounts for approximately half the under-five deaths in India and malnutrition is believed to contribute to 61% of diarrhoeal deaths and 53% pneumonia deaths. Malnutrition increases the risk and worsens the severity of infections. SAM children are more prone to severe infections that culminates into different co-morbid conditions and consequentially leads to electrolyte derangement due to reductive adaptation Na+, K+, ATPase systems of the body begin to ‘shut down’. Regulation of Na+/K+ depends upon excretion, intake, absorption occurs through gastro intestinal system. Disorders of Na+/K+ homeostasis can occur due to excessive loss, gain or retention of the Na+/K+ or H2 O. A vigorous imbalance of these two ions causes hyponatremia/hypokalemia and hypernatremia/hypokalemia. Remarkably, hypokalemia and hyponatremia are seen more frequently in diarrheal population than non-diarrheal. The aim of the study to evaluate the spectrum of co-morbidities in severe acute malnutrition with unexpected dyselectrolytemia in diarrhea.

Material and methods
The observational study which was carried in the Department of Paediatrics, Nalanda Medical College and Hospital, Patna, Bihar, India for 8 months, after taking the approval of the protocol review committee and institutional ethics committee.
Methodology
Total 120 Children below 6 year aged, admitted in Nutritional Rehabilitation Centre of Department of Paediatrics, were include in this study. Various co morbid conditions in study population were identified. All the laboratory examination were done with standard method.

Results
Total 120 cases were included in study of which 95% were associated co-morbid conditions in SAM. Table 1 showed that majority of children with SAM were having co-morbidity in the form of Anaemia (86.67%), Diarrhoea (64.17%) followed by pneumonia (28.33%), Rickets (25.83%), Tuberculosis (15.83%), Otitis media (13.33%), UTI (10.83%), Celiac (5.83%), Hypothyroidism (1.67%), & HIV (0.83%).
Table 1: Co-morbid conditions in SAM

<table>
<thead>
<tr>
<th>Co-morbidity</th>
<th>No. of cases</th>
<th>% Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhoea</td>
<td>77</td>
<td>64.17</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>19</td>
<td>15.83</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>34</td>
<td>28.33</td>
</tr>
<tr>
<td>Otitis media</td>
<td>16</td>
<td>13.33</td>
</tr>
<tr>
<td>UTI</td>
<td>13</td>
<td>10.83</td>
</tr>
<tr>
<td>Rickets</td>
<td>31</td>
<td>25.83</td>
</tr>
<tr>
<td>Anaemia *</td>
<td>104</td>
<td>86.67</td>
</tr>
<tr>
<td>Celiac disease</td>
<td>7</td>
<td>5.83</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>2</td>
<td>1.67</td>
</tr>
<tr>
<td>HIV</td>
<td>1</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Mean age (SD) of the diarrheal cases was 35(6) months (95% C.I. 24.9–27.8) of which 44 were male (57.14%). Mean age (SD) of non-diarrheal cases was 27(6), (95% C.I. 17.2 – 20.4) of which 74.42% were male.

Table 2 shows that 77 (64.17%) SAM children presented with diarrhea of which 76 had dysnatremia in the form of Hyponatremia in 76 cases (63.33%) & Hypernatremia in 2 cases. No statistically significant difference was found with hyponatremia in diarrheal or non-diarrheal cases of SAM (P value of 0.09).

Table 2: Dysnatremia in SAM children in diarrheal & non diarrheal groups

<table>
<thead>
<tr>
<th>Serum Sodium</th>
<th>No diarrhea (%)</th>
<th>Diarrhea (%)</th>
<th>Total (%) of the total cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyponatremia</td>
<td>24 (31.58%)</td>
<td>52 (68.42%)</td>
<td>76 (63.33%)</td>
</tr>
<tr>
<td>Normonatremia</td>
<td>17 (42.50%)</td>
<td>23 (57.50%)</td>
<td>40 (33.33%)</td>
</tr>
<tr>
<td>Hypernatremia</td>
<td>2 (50%)</td>
<td>2 (50%)</td>
<td>4 (3.33%)</td>
</tr>
<tr>
<td>Total cases</td>
<td>43</td>
<td>77</td>
<td>120</td>
</tr>
</tbody>
</table>

Serum Potassium levels of 120 SAM children were analysed. It was found that 25% SAM children were having hypokalemia. Hypokalemia was found in 15.83% of diarrheal cases & 9.17% in non-diarrheal cases. Table 3 shows that Potassium levels of children with diarrheal & non-diarrheal children with SAM. A statistically significant difference was found with hypokalemia in SAM (P value of 0.029) between Diarrheal & Non diarrheal cases.

Table 3: Hypokalemia in SAM children

<table>
<thead>
<tr>
<th>Serum Potassium</th>
<th>No diarrhea</th>
<th>Diarrhea</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normokalemia</td>
<td>32</td>
<td>58</td>
<td>90</td>
</tr>
<tr>
<td>Hypokalemia</td>
<td>11</td>
<td>19</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>43</td>
<td>77</td>
<td>120</td>
</tr>
</tbody>
</table>

Discussion

In the present study among 120 cases 95% were associated co-morbid conditions in SAM. Majority of children with SAM were having co-morbidity in the form of Anaemia (86.67%), Diarrhoea (64.17%) followed by pneumonia (28.33%), Rickets (25.83%), Tuberculosis (15.83%), Otitis media (13.33%), UTI (10.83%), Celiac (5.83%), Hypothyroidism (1.67%), & HIV (0.83%). In present study anaemia was found in 86.67% which is higher than 51% from Columbia as reported by Bernal C et al 2008. It was further observed that
children with SAM was having 50% moderate anaemia followed by 38% severe anaemia in present study which is contrary to the study from Delhi as reported by Thakur et. al. This can be contributed to nutritional deficiency as majority of the patients had dietary deficiency. 64.17% of children with SAM in present study was admitted with diarrhea as a co morbid state which is in accordance with 60% from Bangladesh as reported by Khanum et. al 1998 but lower than 67% from Zambia as reported by Irena et. al 2011, 68% from Columbia as reported by Bernal C. et al 2008, 70% from Kenya as reported by Nzioki et. al 2009 which may be due to geographical factor while higher than 54% from Madhya Pradesh as reported by Kumar et al 2013, 49% from Kenya as reported by Talbert et. al 2005 and 11% from Bangladesh as reported by Hossain et.al 2009. It may be because of low socioeconomic status, bottle feeding & unhygienic feeding can be contributed to this high prevalence of diarrhea in present study. In our study hypokalemia was found associated with diarrhea and hyponatremia was found not associated which is comparable to other studies. Further studies are needed establish the exact understanding of electrolyte changes in SAM. 28.33% of children with SAM in present study was admitted as a pneumonia based on the clinical findings & Chest X Ray which is higher than 10% in Ethiopia as reported by Berti et. al 2008 which may be because of late admission in NRC. However it is lower than 33% and 58% from Bangladesh as reported by Hossain et al and Kahnnum et al 1998 respectively. 15.83% of Children with SAM were diagnosed as a Pulmonary tuberculosis in a present study which is higher than 2%, 5.6%, 6.6%, 9% and 9.3% from Karnataka, Madhya Pradesh, Ethiopia, Bangladesh and Uttar Pradesh as reported by Bhat et al, Gangaraj 2013, Berti et al 2008, Hossain M et al & Kumar et al respectively. The high prevalence tuberculosis in present study may be because of children with SAM are belonging to low socio economic class. The high prevalence can be contributed to the more cases having history of contact positive. So screening of all SAM children with Tuberculosis is a must to find the actual disease burden in SAM. 10.83% of children with SAM were diagnosed UTI in present study which is lower than 11%, 17%, 30%, 31% from Nigeria, Delhi, Turkey and Mexico as reported by Rabasa et al 2002, Bagga et al 2003, Caksen et al 2000, Berkowitz et al 1983 respectively. 5.83% of children with SAM were diagnosed with Celiac disease in the present study based on clinical features suggestive of celiac disease, which is lower than 13% from Delhi as reported by Kumar et al 2012. 25.83% SAM children in our study had ricketic features, and this is comparable with the previous reports. This can be contributed to dietary deficiency and Vitamin D supplementation in early period of life. 1.67% of children with SAM were diagnosed with hypothyroidism in the present study based on clinical features suggestive of hypothyroidism. Exact prevalence of hypothyroidism was not found because selected cases were investigated. 0.83% of children with SAM were diagnosed HIV positive in the present study which is lower than found in previous studies. This may be because of low prevalence of HIV in present study. However high prevalence of HIV infection in children with SAM in African country may be associated with nutritional deficiencies secondary to decreased nutrient intake, impaired nutrient absorption, increased nutrient losses and increased nutrient demand. This is due to direct effect of HIV and the myriad of opportunistic infections precipitated by HIV induced immunodeficiency.

Conclusion

Co-morbidities identification and treatment in SAM children is key step in reducing morbidity and mortality associated with SAM.
Reference

25. Praveen Kumar et al Should We Screen Children with Severe Acute Malnutrition for Celiac Disease? Department of Pediatrics, Kalawati Saran Children’s Hospital, Lady Hardinge Medical College Indian Pediatr 2012;49:330-331.
31. Tim De Maayer, Haroon Saloojee Clinical outcomes of severe malnutrition in a high tuberculosis and HIV setting. Archives of Disease in Childhood 02/2011;96(6):560-4