Abstract

Aim: The aim of the study is to assess the levels of glycated hemoglobin, total protein, and albumin in patients with type 2 diabetes mellitus.

Methods: A case-control study was conducted at the Department of Pathology, Darbhanga Medical College and Hospital, Laheriasarai, Darbhanga, Bihar, India, for a year. The study involved 100 participants, 50 of whom were diabetic and 50 of whom were not, all of whom were between the ages of 40 and 70. Every patient's blood sample was obtained in 5 ml, with 1 ml dispensed into EDTA for glycated hemoglobin estimation and 4 ml dispensed into clear containers for serum albumin and total protein estimation. Normal procedures were used to determine the amount of glycated hemoglobin, estimate serum albumin, and estimate total protein.

Results: The mean level of HbA1c was significantly higher in the diabetic subjects compared to the control group (10.11 ± 1.41 vs. 6.18 ± 0.71; p = 0.000). There were no significant differences observed between the age, serum levels of albumin and total protein in the test and control subjects (p > 0.05).

Conclusion: The present study showed significantly higher mean levels of HbA1c in the diabetic patients compared to the control subjects. However, the mean serum levels of albumin and total protein did not differ significantly when compared between the diabetic patients and controls.

Keywords: HbA1c %, serum albumin, diabetes mellitus

Introduction

Since the 1990s, the World Health Organization (WHO) and diabetes associations or societies in many countries have recommended HbA1c as the preferred diagnostic index for monitoring diabetes but more recently has also been advocated as a diagnostic tool for T2DM, while HbA1c is also generally recognized as the “gold standard” for blood glucose testing. However, HbA1c has some limitations. Several studies have shown that HbA1c cannot be used to accurately assess blood glucose levels under certain circumstances, such as changes in red blood cell life and imbalance in the proportion of young and mature erythrocytes, Hb metabolic disorders and the use of erythropoietin. Glycated serum protein (GSP) is a product of non-enzymatic reaction between blood glucose and plasma protein (approximately 70% of which is albumin). The determination of glycosylated serum protein (GSP) is also called fructosamine determination. Glycosylated serum protein (GSP) measurement reflects the total glycosylated plasma protein in plasma, its value is susceptible to the influence of protein concentration, bilirubin, chyle and low molecular weight substances in blood, especially in patients with hypoproteinemia and abnormal albumin transformation. At the same time, non-specific reducing substances in serum can also react with glycation sites. The specificity of
glycosylated serum protein (GSP) assay is poor because of the different reaction rates. GA is an emerging indicator for blood glucose monitoring; several studies have suggested that GA is more suitable in patients with certain diseases, such as hemolytic anemia, hepatic cirrhosis with hyperglycemia, than HbA1c.10,11 GA is the product of glucose and serum albumin in non-enzymatic reactions, representing the average level of blood glucose in recent 2–3 weeks. GA relative to HbA1c can better reflect the changes or fluctuations in blood glucose level. In addition, several investigators have suggested that, compared with HbA1c, GA is more suitable as a diagnostic parameter for recessive diabetes and stress hyperglycemia12 and as a monitoring glycemic control in patients with anemia.13 Although there are many advantages of GA over HbA1c, it also has some limitations that it could be affected by changes in the structure and half-life of albumin.14 In patients with aplastic anemia, the red blood cell life and hemoglobin metabolism are affected by their abnormal proliferation of bone marrow. Therefore, it is particularly important to develop and screening of diabetes and monitoring of glycemic control status for patients with aplastic anemia and those with diabetes.

Material and methods
This case control study was done the Department of Pathology Darbhanga Medical College and Hospital, Laheriasarai, Darbhanga, Bihar, India, for 1 year, after taking the approval of the protocol review committee and institutional ethics committee.

Methodology
The research enlisted 100 participants, 50 of whom were diabetic and 50 of whom were not, all of whom were between the ages of 40 and 70. Every patient's blood sample was obtained in 5mls, with 1ml dispensed into EDTA for glycated haemoglobin estimation and 4ml dispensed into clear containers for serum albumin and total protein estimation. Normal procedures were used to determine the amount of glycated haemoglobin, estimate serum albumin, and estimate total protein.

Inclusion criteria
Known diabetic subjects aged between 40 and 70 years were included in this study.

Exclusion criteria
Younger than 40 or older than 70 years and non-diabetic subjects were excluded from the study.

Estimation
Determination of glycated haemoglobin level Glycated Haemoglobin level was determined using immunoturbidimetric method as described by Wolf et al., (1984).15 Estimation of serum albumin level Serum albumin level was estimated Bromo Cresol green Method as described by Doumas et al., (1971).16 Estimation of total protein Estimation of serum total protein level was done using Biuret Method according to Weichsel Baum, (1946).17 Statistical analysis
The data were presented as mean±SD and the mean values of the control and test group were compared by Students t-test and pearson correlation using Statistical package for social sciences (SPSS) (Version 20) software. Statistical significance was tested at P<0.05.

Results
The mean level of HbA1c was significantly higher in the diabetic subjects when compared with control group (10.11±1.41Vs 6.18±0.71; p=0.000). There was no significant differences observed between the age, the serum levels of Albumin and Total protein in the test and control subjects (p>0.05).

Table 1: Levels of HbA1c, total protein and albumin in diabetic and control patients

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>Diabetic subject</th>
<th>t-test</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age(years)</td>
<td>57.69±8.89</td>
<td>57.51±8.85</td>
<td>-</td>
<td>0.935</td>
</tr>
<tr>
<td>HbA1c(%)</td>
<td>6.18±0.71</td>
<td>10.11±1.41</td>
<td>1.81</td>
<td>0.000*</td>
</tr>
<tr>
<td>Protein(g/L)</td>
<td>75.05±3.76</td>
<td>73.26±3.27</td>
<td>1.74</td>
<td>0.111</td>
</tr>
<tr>
<td>Albumin(g/L)</td>
<td>39.03±3.05</td>
<td>39.28±3.32</td>
<td>0.29</td>
<td>0.789</td>
</tr>
</tbody>
</table>

Table 2 shows that there is no significant correlation between age, HbA1c, total protein and albumin in diabetic patients.

Table 2: Correlation of HbA1c with age, total protein and albumin in diabetic patients

<table>
<thead>
<tr>
<th>Parameters</th>
<th>R</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA1c Vs age</td>
<td>0.081</td>
<td>0.677</td>
</tr>
<tr>
<td>HbA1c Vs Total protein</td>
<td>0.092</td>
<td>0.589</td>
</tr>
<tr>
<td>HbA1c Vs Albumin</td>
<td>-0.159</td>
<td>0.345</td>
</tr>
<tr>
<td>Age Vs Total protein</td>
<td>-0.051</td>
<td>0.787</td>
</tr>
<tr>
<td>Age Vs Albumin</td>
<td>0.091</td>
<td>0.623</td>
</tr>
<tr>
<td>Total protein Vs</td>
<td>-0.007</td>
<td>0.978</td>
</tr>
</tbody>
</table>

Discussion

In this study, the mean level of HbA1c was significantly higher in the diabetic subjects than in control. This is in consonance with the report of some previous similar studies.18,19 This increase can be attributed to hyperglycaemia and disturbances of carbohydrate, fat and protein metabolism that results from abnormalities in insulin secretion, insulin action or even both.20 This finding implies that there is a poor glycemic control in the diabetic subjects under study. Furthermore, our finding shows a higher mean value of HbA1c (10.11±1.41) than the recommended cut point (0.05). This is in line with the report of previous studies.18 This may be as a result of Insulin resistance which is a principal cause of type 2 diabetes (Kahn, 1994)21 and previously, serum albumin has been associated with insulin resistance.22,23 In diabetic patients, plasma albumin concentration has been reported to be inversely related with HbA1c levels, revealing a large proportion of poorly controlled diabetes in patients with lower plasma albumin concentrations.24,25 This inverse relationship may also be explained by the fact that poorly controlled type 2 diabetes has been associated with a further decrease in insulin production and secretion by the pancreatic β-cell.26,27 Furthermore, our finding shows no significant difference between the serum levels of total protein in the diabetic patients and control subjects (p>0.05). This is in contrast with the findings of (Malawadi and Adiga, 2016; Nazki et al., 2017).18,19 There is no significant correlation between age, HbA1c, total protein and albumin in diabetic subjects. This finding is not in agreement with the finding of Hemangi et al., (2012)24 in which plasma albumin levels were negatively correlated with HbA1c and low albumin levels was associated with increased plasma protein glycation and that albumin competes for glycation with other plasma proteins in diabetes.28
In comparison to the control subjects, diabetic patients had substantially higher mean HbA1c levels in this sample. When comparing diabetic patients and controls, the mean serum levels of albumin and total protein did not vary substantially. This observation suggests that the diabetic participants tested had low glycemic regulation. As a result, improved diabetic patient care by treatment, diet, and exercise is needed.

Reference

