• Register
  • Login

European Journal of Molecular & Clinical Medicine

  1. Home
  2. USE OF MACHINE LEARNING TO FIND AND CLASSIFY BRAIN TUMORS

Current Issue

By Issue

By Author

By Subject

Author Index

Keyword Index

About Journal

Aims and Scope

Editorial Board

Publication Ethics

Indexing and Abstracting

Related Links

FAQ

Peer Review Process

Journal Metrics

News

USE OF MACHINE LEARNING TO FIND AND CLASSIFY BRAIN TUMORS

    Author

    • Dr. Raja Sarath Kumar Boddu

    Department of Computer Science Engineering, Lenora College of Engineering, Rampachodavaram, Andhra Pradesh, India.

,

Document Type : Research Article

  • Article Information
  • Download
  • Export Citation
  • Statistics
  • Share

Abstract

Brain tumour segmentation is one of the most critical and time-consuming jobs in the field of medical image processing since a human-assisted manual categorization may lead to incorrect prognosis and diagnosis. Furthermore, when there is a big quantity of data to be handled, it is a time-consuming job to say the least. There is a great deal of variation in brain tumours. There is a resemblance in appearance between tumour and normal tissues, which allows for the extraction of tumour areas from normal tissues. Images grow stubborn as time goes on. Using 2D Magnetic Resonance Imaging, we presented a technique for extracting brain tumours from brain scans. The Fuzzy C-Means clustering technique was used to cluster brain images (MRIs), which was then followed by conventional classifiers and other methods. A convolution neural network is a kind of neural network. The experimental research was conducted out on a real-time dataset including tumours of varying sizes, and Locations, forms, and varying picture intensities are all explored. In the conventional classifier section, we used six different traditional classifiers. Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Multilayer Perception (MLP), and Logistic Regression are examples of machine learning algorithms. Regression, Nave Bayes, and Random Forest are all machine learning techniques that have been incorporated in scikit-learn. Following that, we went on to Convolution Neural Network (CNN) is a kind of neural network that is built using Keras and Tensor flow since it produces superior results. Performance as compared to the conventional ones CNN had an accuracy rate of 97.87 percent in our research, which is very impressive. The In this article, the primary objective is to differentiate between normal and aberrant pixels using texture-based and statistical methods. Characteristics that are based on
 

Keywords

  • CNN
  • FCM
  • Medical Image
  • segmentation
  • SVM
  • XML
  • PDF 912.55 K
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • VANCOUVER
    • Article View: 168
    • PDF Download: 162
European Journal of Molecular & Clinical Medicine
Volume 7, Issue 3
November 2020
Page 892-898
Files
  • XML
  • PDF 912.55 K
Share
Export Citation
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • VANCOUVER
Statistics
  • Article View: 168
  • PDF Download: 162

APA

Boddu, D. R. S. K. (2021). USE OF MACHINE LEARNING TO FIND AND CLASSIFY BRAIN TUMORS. European Journal of Molecular & Clinical Medicine, 7(3), 892-898.

MLA

Dr. Raja Sarath Kumar Boddu. "USE OF MACHINE LEARNING TO FIND AND CLASSIFY BRAIN TUMORS". European Journal of Molecular & Clinical Medicine, 7, 3, 2021, 892-898.

HARVARD

Boddu, D. R. S. K. (2021). 'USE OF MACHINE LEARNING TO FIND AND CLASSIFY BRAIN TUMORS', European Journal of Molecular & Clinical Medicine, 7(3), pp. 892-898.

VANCOUVER

Boddu, D. R. S. K. USE OF MACHINE LEARNING TO FIND AND CLASSIFY BRAIN TUMORS. European Journal of Molecular & Clinical Medicine, 2021; 7(3): 892-898.

  • Home
  • About Journal
  • Editorial Board
  • Submit Manuscript
  • Contact Us
  • Glossary
  • Sitemap

News

 

For Special Issue Proposal : editor.ejmcm21@gmail.com

Newsletter Subscription

Subscribe to the journal newsletter and receive the latest news and updates

© Journal Management System. Powered by ejournalplus