Improved and Generalized Bernstein Type Inequalities for the Higher Derivatives of a Polynomial

Barchand Chanam*, Khangembam Babina Devi, Reingachan N, Thangjam Birkramjit Singh

Department of Mathematics
National Institute of Technology Manipur, Imphal, Manipur, India

Kshetrimayum Krishnadas
Department of Mathematics
Shaheed Bhagat Singh College (University of Delhi), Delhi, India

Abstract - Let $p(z)$ be a polynomial of degree n having no zero zero in $z \leq k$, $k \geq 1$, then for $1 \leq R \leq k$, Dewan and Bidkham [J. Math. Anal. Appl., 166(1992), 319-324] proved
\[
\max_{|z|=R}|p(z)| \leq n \left(\frac{R+k}{1+k} \right)^{n-1} \max_{|z|=1}|p(z)|.
\]
The result is best possible and extremal polynomial is $p(z) = (z+k)^n$.

In this paper, by involving certain coefficients of the polynomial $p(z)$, we prove a result concerning the estimate of maximum modulus of higher derivatives of $p(z)$, which not only improves as well as generalizes the above result, but also has interesting consequences as special cases.

Keywords – Polynomial, Polynomial Inequalities, Maximum Modulus.

I. INTRODUCTION

It was for the first time, Bernstein [12, 13] investigated an upper bound for the maximum modulus of the first derivative of a complex polynomial on the unit circle in terms the maximum modulus of the polynomial on the same circle and proved the following famous result known as Bernstein’s inequality that if $p(z)$ is a polynomial of degree n, then
\[
\max_{|z|=1}|p(z)| \leq n \max_{|z|=1}|p(z)|.
\] (1.1)

Inequality (1.1) is best possible and equality occurs for $p(z) = \lambda z^n$, $\lambda \neq 0$, is any complex number.

*Corresponding Author
If we restrict to the class of polynomials having no zero in $z \leq k$, then inequality (1.1) can be sharpened as
Theorem. If $p(z)$ is a polynomial of degree n having no zero in $|z| < k$, $k \geq 1$, then
\[
\max_{|z|=1} |p(z)| \leq \frac{n}{1+k} \max_{|z|=1} |p(z)|.
\] (1.2)

The result is sharp and equality holds in (1.2) for $p(z) = \alpha + \beta z^n$, where $|\alpha| = |\beta|$

Inequality (1.2) was conjectured by Erdős and later proved by Lax [10].

Simple proofs of this theorem were later given by de-Bruijn [3], and Aziz and Mohammad [1].

It was asked by Professor R.P. Boas that if $p(z)$ is a polynomial of degree n not vanishing in $|z| < k$, $k > 0$, then how large can
\[
\max_{|z|=1} \left| \frac{p(z)}{\max_{|z|=1} |p(z)|} \right| \text{ be?}
\] (1.3)

A partial answer to this problem was given by Malik [11], who proved

Theorem A. If $p(z)$ is a polynomial of degree n having no zero in the disc $|z| < k$, $k \geq 1$, then
\[
\max_{|z|=1} |p(z)| \leq \frac{n}{1+k} \max_{|z|=1} |p(z)|.
\] (1.4)

The result is best possible and equality holds for $p(z) = (z+k)^n$.

For the class of polynomials not vanishing in $|z| < k$, $k \leq 1$, the precise estimate for maximum of $|p(z)|$ on $|z| = 1$, in general, does not seem to be easily obtainable. For quite some time, it was believed that if $p(z) \neq 0$ on $|z| < k$, $k \leq 1$, then the inequality analogous to (1.4) should be
\[
\max_{|z|=1} |p(z)| \leq \frac{n}{1+k} \max_{|z|=1} |p(z)|.
\] (1.5)

till Professor E.B. Saff gave the example $p(z) = \frac{z - \frac{1}{2}}{z + 3}$ to counter this belief.

Dewan and Bidkham [4] generalized Theorem A by considering any circle that lies in a closed circular annulus of radii 1 and k where $k \geq 1$. In fact, they prove

Theorem B. If $p(z)$ is a polynomial of degree n having no zero in $|z| < k$, $k \geq 1$, then for $1 \leq R \leq k$,
\[
\max_{|z|=R} |p(z)| \leq \frac{n}{(1+k)^n} \max_{|z|=1} |p(z)|.
\] (1.6)

The result is best possible and extremal polynomial is $p(z) = (z+k)^n$.

In this paper, by involving some coefficients of the polynomial $p(z)$ and also $\min_{|z|=k} |p(z)|$, we obtain a result which is an improvement and a generalization of (1.6) by further extending for the sth derivative of $p(z)$ and maxima are considered on two different circles lying both inside and on any circle. More precisely, we have

Theorem. If $p(z) = \sum_{\nu=0}^{n} a_{\nu} z^\nu$ is a polynomial of degree n having no zero in $|z| < k$, $k > 0$, then for $0 < r \leq R \leq k$, $1 \leq s \leq n$, and for every real or complex number λ with $\lambda \neq 1$,
\[
\max_{|z|=R} |p^{(s)}(z)| \leq \frac{n(n-1)\ldots(n-s+1)}{R^n + \delta_{k,s}} \left[\left| \frac{R+k}{r+k} \right| \max_{|z|=R} |p(z)| - \min_{|z|=R} |p(z)| \right],
\]
(1.7)
where
\[
\delta_{k,s} = \frac{1}{C(n, s)} \left\{ \frac{1}{|a_s|} \right\}_{k+1} R^{s+1} + \frac{1}{C(n, s)} \left\{ \frac{1}{|a_s|} \right\}_{k+s+1} R^{s+1}.
\]
The result is best possible for \(s = 1 \) and equality in (1.7) holds for \(p(z) = (z + k)^n \).

Remark 1.1. Taking limit as \(\lambda \to 1 \), our theorem reduces to the following interesting result, which gives a generalization of the result of Mir [13].

Corollary 1.1. If \(p(z) = \sum_{v=0}^{n} a_v z^v \) is a polynomial of degree \(n \) having no zero in \(|z| < k, \ k > 0 \), then for \(0 < r \leq R \leq k \) and \(1 \leq s \leq n \),
\[
\max_{|z|=R} |p^{(s)}(z)| \leq \frac{n(n-1)\ldots(n-s+1)}{R^n + \phi_{k,s}} \left[\left| \frac{R+k}{r+k} \right| \max_{|z|=R} |p(z)| - \min_{|z|=R} |p(z)| \right],
\]
where
\[
\phi_{k,s} = \frac{1}{C(n, s)} \left\{ \frac{1}{|a_s|} \right\}_{k+1} R^{s+1} + \frac{1}{C(n, s)} \left\{ \frac{1}{|a_s|} \right\}_{k+s+1} R^{s+1}.
\]

Remark 1.2. Putting \(R = r = 1 \), Corollary 1.1 further reduces to the result proved by Mir [13], namely

Corollary 1.2. If \(p(z) = \sum_{v=0}^{n} a_v z^v \) is a polynomial of degree \(n \) having no zero in \(|z| < k, \ k \geq 1 \), then for \(1 \leq s \leq n \),
\[
\max_{|z|=1} |p^{(s)}(z)| \leq \frac{n(n-1)\ldots(n-s+1)}{(k+1)^n} \left[\left| \frac{R+k}{r+k} \right| \max_{|z|=1} |p(z)| - \min_{|z|=1} |p(z)| \right],
\]
where
\[
\psi_{k,s} = \frac{1}{C(n, s)} \left\{ \frac{1}{|a_s|} \right\}_{k+1} R^{s+1} + \frac{1}{C(n, s)} \left\{ \frac{1}{|a_s|} \right\}_{k+s+1} R^{s+1}.
\]

Remark 1.3. Further in Corollary 1.2, it is seen similar in the proof of the theorem that for a complex number \(\lambda \) with \(|\lambda| < 1 \), polynomial \(p(z) - \lambda m \), where \(m = \min_{|z|=k} |p(z)| \), has no zero in \(|z| < k, \ k \geq 1 \) and it follows by applying inequality (2.2) of Lemma 2.1 to \(p(Rz) - \lambda m \), that
By Lemma 2.3, we get
\[C(n, s)|a_0 - \lambda m| \geq |a_s k| , \]
Letting \(\lambda \to 1 \), we get
\[C(n, s) \left(|a_0| - |\lambda m| \right) \geq |a_s| k^s . \]
which in turn implies \(\psi_{k,s} \) of Corollary 1.2 is such that \(\psi_{k,s} \geq k^s \) for \(1 \leq s \leq n \). This implies that Corollary 1.2 is an improvement of a result of Govil [8].

Remark 1.4. Putting \(\lambda = 0 \), our theorem reduces to the following result, which is a generalization of a result of Aziz and Rather [2].

Corollary 1.3. If \(p(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu} \) is a polynomial of degree \(n \) having no zero in \(|z| < k, k > 0 \), then
\[\max_{|z|=R} |p^{(s)}(z)| \leq R^{s+s} \alpha_{k,s} \max_{|z|=r} |p(z)| \left\{ \begin{array}{l} \left(\frac{R+k}{r+k} \right)^{s-s} \max_{|z|=k} |p(z)| R^{s-s} \min_{|z|=k} |p(z)| \end{array} \right\}. \tag{1.8} \]
where
\[\alpha_{k,s} = \frac{k^{s+1} + \frac{1}{C(n,s)} |a_0| k^r R}{R + \frac{1}{C(n,s)} |a_0| k^{s+1}} . \]

Remark 1.5. If we put \(R = r = 1 \) in Corollary 1.1 then in this case \(k \geq 1 \) and by Lemma 2.1, we have
\[\left(k-1 \right) \left\{ 1 - \frac{1}{C(n,s)} |a_0| k^s \right\} \geq 0 , \]
which is equivalent to
\[k^{s+1} + \frac{1}{C(n,s)} |a_0| k^r R \geq k^s . \tag{1.9} \]
Inequality (1.9) clearly shows that Corollary 1.1 is an improvement and a generalization of a result proved by Govil and Rahman [7].

Remark 1.5. Corollary 1.1 provides a generalization of a result due Aziz and Rather [2].

Remark 1.5. If we assign \(\lambda = 0 \) and \(R = r = s = 1 \), our theorem reduces to a result of Govil et al [8].

Remark 1.6. Corollary 1.2 is an improved as well as a generalised version of a well-known inequality proved by Malik [11] under the same set of hypotheses.

Remark 1.7. If we put \(s = r = R = k = 1 \), Corollary 1.1 gives an improvement of inequality (1.2), conjectured by Erdös and later proved by Lax [10].
II LEMMA

The following lemmas are needed for the proof of the theorem.

Lemma 2.1. If \(p(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu} \) is a polynomial of degree \(n \) such that \(p(z) \neq 0 \) for \(|z| < k, k \geq 1 \), then

\[
\mu_{k,s} |p^{(s)}(z)| \leq |q^{(s)}(z)| \text{ for } |z| = 1, \tag{2.1}
\]

and

\[
\frac{1}{C(n,s)_{k_{0}}} \leq 1, \tag{2.2}
\]

where

\[
q(z) = z^{n} p\left(\frac{1}{z}\right),
\]

\[
k, s = \begin{cases}
\text{for } C(n,s)_{k_{0}} & \text{and } C(n,s) \text{ is as defined in our theorem.}
\end{cases}
\]

The above result is due to Aziz and Rather [2].

Lemma 2.2. If \(p(z) = a_{0} + \sum_{\nu=\mu}^{n} a_{\nu} z^{\nu}, 1 \leq \mu \leq n, \) is a polynomial of degree \(n \) such that \(p(z) \neq 0 \) in \(|z| < k, k > 0 \), then for \(0 < r \leq R \leq k \),

\[
\max_{|z|=R} |p(z)| \leq \left(\frac{R^{n+k}}{r^{n+k}} + k^{2s}\right)^{\mu} \max_{|z|=r} |p(z)| - \left(\left(\frac{R+k}{r^{\mu}} + k^{2s}\right)^{\mu} - 1\right) \min_{|z|=k} |p(z)|, \tag{2.3}
\]

Equality holds in (2.2) for \(p(z) = \left(z^{n+k}\right)^{\mu} \) where \(n \) is a multiple of \(\mu \).

This Lemma is due to Dewan et al [5].

Lemma 2.3. If \(p(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu} \) is a polynomial of degree \(n \) with \(p(z) \neq 0 \) for \(|z| < k, k \geq 1 \), then \(|p(z)| > m \) for \(|z| < k \), and in particular \(|a| > m \), where \(m = \min_{|z|=k} |p(z)| \).

The above lemma is due to Gardner et al. [6].

The following lemma was proved by Govil [7].

Lemma 2.4. If \(p(z) \) is a polynomial of degree \(n \) having no zero in \(|z| < k, k \geq 1 \), then for \(|z| \geq \frac{1}{k} \),

\[
|q^{(s)}(z)| \geq mn(n-1)...(n-s+1)z^{n-s}, \tag{2.4}
\]

where \(m = \min_{|z|=k} |p(z)| \) and \(q(z) = z^{n} p\left(\frac{1}{z}\right) \).

Lemma 2.5. The function
\[\phi(x) = k^{x+1} \left| 1 + \frac{1}{C(n, s)} \left| \frac{a_s}{n} \right| k^{s-1} \right| \left| 1 + \frac{1}{C(n, s)} \left| \frac{a}{x} \right| k^{s+1} \right|, \quad k \geq 1 \]

is an increasing function of \(x \).

\(C(n, s) \) is as defined in our theorem.

Proof of Lemma 2.5. The proof follows easily by considering the first derivative test on \(\phi(x) \).

III. PROOF OF THE THEOREM

If \(p(z) \) has no zero in \([k] \), \(k > 0 \) and if \(0 < r \leq R \leq k \), then \(P(z) = p(Rz) \) has no zero in \(|z| < \frac{k}{R} \), \(\frac{k}{R} \geq 1 \). Now, \(m = \min_{|z|=k} |P(z)| = \min_{|z|=k} |p(Rz)| = \min_{|z|=k} |p(z)| \) .

If \(m > 0 \), then it follows from Rouche’s Theorem that for every real or complex number \(\lambda \) with \(|\lambda| < 1 \) the polynomial \(F(z) = P(z) - \lambda m \) has no zero in \(|z| < \frac{k}{R} \), \(\frac{k}{R} \geq 1 \). Applying inequality (2.1) of Lemma 2.1 to \(F(z) \), we have for \(|z| = 1 \)

\[k_{s,s} \left| P^{(s)}(z) \right| \leq \left| Q^{(s)}(z) - \lambda mn(n-1)...(n-s+1)z^{x-s} \right|, \quad (3.1) \]

where

\[Q(z) = z^n P \left(\frac{1}{z} \right), \]

\[k_{s,s} = \frac{1}{R} \left\{ k^{x+1} + \frac{1}{C(n, s)} \left| a_s \right| k^{s-1} \right\}, \]

and

\[C(n, s) = \frac{n!}{s!(n-s)!}. \]

Since \(|\lambda| < 1 \), we have

\[|a_0 - \lambda m| \geq |a_0| - |\lambda| |m|. \quad (3.2) \]

In view of inequality (3.2) and Lemma 2.5, inequality (3.1) gives for \(|z| = 1 \),

\[k_{s,s} \left| P^{(s)}(z) \right| \leq \left| Q^{(s)}(z) - \lambda mn(n-1)...(n-s+1)z^{x-s} \right|, \quad (3.3) \]

where

\[k_{s,s} = \frac{1}{R} \left\{ k^{x+1} + \frac{1}{C(n, s)} \left| a_s \right| k^{s-1} \right\}, \]

If we choose the argument of \(\lambda \) on the right hand side of (3.3) such that for \(|z| = 1 \),

\[Q^{(s)}(z) - \lambda mn(n-1)...(n-s+1)z^{x-s} \right| = Q^{(s)}(z) - \frac{k}{k} |mn(n-1)...(n-s+1), \quad (3.4) \]
which is possible by inequality (2.3) of Lemma 2.4. Using (3.4) to (3.3), we obtain
\[\mu_{k,s} \left| P^{(s)}(z) \right| \leq \left| Q^{(s)}(z) \right| - \lambda |mn(n-1)...(n-s+1)|, \text{ for } |z| = 1. \]
(3.5)

Now, if \(f(z) \) is a polynomial of degree \(n \) having all its zeros in \(|z| \leq 1 \), then \(g(z) = z^n f \left(\frac{1}{z} \right) \) has no zero in \(|z| < 1 \). Hence, using inequality (2.1) of Lemma 2.4 with \(k = 1 \), we have for \(|z| = 1 \)
\[|g^{(s)}(z)| \leq |f^{(s)}(z)|. \]
(3.6)

Let \(M = \max_{|z|=1} |P(z)| \), then for every real or complex number \(\gamma \) with \(|\gamma| > 1 \), we have, by Rouche’s theorem the polynomial \(T(z) = P(z) - \gamma M z^n \) has all its zeros in \(|z| < 1 \). Suppose
\[S(z) = z^n T \left(\frac{1}{z} \right) = z^n P \left(\frac{1}{z} \right) - \gamma M = Q(z) - \gamma M \]
Applying (3.6) to \(T(z) \), we get for \(1 \leq s \leq n \) and \(|z| = 1 \)
\[|S^{(s)}(z)| \leq |T^{(s)}(z)|, \]
which implies
\[\left| Q^{(s)}(z) \right| \leq \left| P^{(s)}(z) - \gamma M n(n-1)...(n-s+1)z^n \right| \text{ for } |z| = 1. \]
(3.7)

Since \(P(z) \) is of degree \(n \), it is evident that the polynomial \(P^{(s)}(z) \) is of degree \((n-s) \) and repeated application of Bernstein’s inequality (1.1) to \(P(z) \) yields for \(|z| = 1 \)
\[|P^{(s)}(z)| \leq M n(n-1)...(n-s+1). \]
(3.8)

Further, for suitable choice of the argument of \(\gamma \) in (3.7), we have for \(|z| = 1 \)
\[\left| Q^{(s)}(z) \right| \leq \left| \gamma M n(n-1)...(n-s+1) \right| - |P^{(s)}(z)|, \]
which becomes by taking limit as \(|\gamma| \to 1 \),
\[\left| Q^{(s)}(z) \right| \leq M n(n-1)...(n-s+1) - |P^{(s)}(z)|, \]
which for \(|z| = 1 \), becomes on using (3.8) that
\[|P^{(s)}(z)| + |Q^{(s)}(z)| \leq n(n-1)...(n-s+1)M. \]
(3.9)

Inequality (3.9) in conjunction with inequality (3.5) gives for \(|z| = 1 \)
\[\left| P^{(s)}(z) \right| \leq \frac{1}{1 + \mu_{k,s}} n(n-1)...(n-s+1) \left\{ \max_{|z|=1} |P(z)| - \lambda |mn| \right\}, \]
(3.10)

which on replacing \(P(z) \) by \(p(Rz) \), we have for \(|z| = 1 \),
\[\left| P^{(s)}(z) \right| \leq \frac{1}{R^s + \delta_{k,s}} n(n-1)...(n-s+1) \left\{ \max_{|z|=1} |p(z)| - \lambda \min_{\|z|=1} |p(z)| \right\} \text{ for } |z| = 1, \]
(3.11)

where \(\delta_{k,s} \) is as defined in the theorem.

When \(\mu = 1 \), Lemma 2.2 becomes for \(0 < r \leq R \leq k \),
\[\max_{|z|=1} |p(z)| \leq \left\{ \max_{|z|=1} \left| \left(\frac{R+k}{r+k} \right)^a \right| \right\} \left| \min_{|z|=1} p(z) \right| + \lambda \min_{|z|=1} |p(z)|. \]
(3.12)

Using inequality (3.12) to inequality (3.11), we obtain
\[
\max_{|z|=R} |p^{(s)}(z)| \leq \frac{n(n-1)\ldots(n-s+1)}{R^s + \delta_{k,s}} \left(\max_{|z|=R} |p(z)| \right) \left(\frac{R+k}{r+k} \right)^n - 1 + \frac{k^s}{\min_{|z|=k} |p(z)|},
\]

which completes the proof of the theorem.

REFERENCES

