DENTINAL HYPERSENSITIVITY

Contributors:
1. Dr. S. Aafiya Reshma
 Post Graduate Student, Department of Oral Pathology and Microbiology
 Sree Balaji Dental College And Hospital, Chennai
 Bharath Institute of Higher Education
2. Dr K.M.K. Masthan
 Professor and Head, Department of Oral Pathology and Microbiology
 Sree Balaji Dental College and Hospital, Chennai.
 Bharath Institute of Higher Education
3. Dr N. Aravindha Babu
 Professor, Department of Oral Pathology and Microbiology
 Sree Balaji Dental College and Hospital, Chennai.
 Bharath Institute of Higher Education
4. N. Anitha
 Reader, Department of Oral Pathology and Microbiology
 Sree Balaji Dental College and Hospital, Chennai.
 Bharath Institute of Higher Education

Corresponding Author:
1. Dr. S. Aafiya Reshma
 I yr Post graduate student, Department of Oral pathology and Microbiology
 Sree Balaji Dental College And Hospital, Chennai
 Bharath Institute of Higher Education

Abstract: The main aim of this review article is to provide information about Dentin Hypersensitivity (DH). Dentin Hypersensitivity, a common condition of the teeth, characterized by short sharp pain arising from exposed dentinal tubules in response to stimuli. The article reviews its clinical features, pathogenesis, mechanism, diagnosis, prevention and management. The diagnosis should be accurate and all the differential diagnosis should be omitted. Desensitization remains the major choice for dentin hypersensitivity. The basic principle of treatment of dentin hypersensitivity is to block the patent tubules or block pulpal nerve response.

Keywords: Dentin hypersensitivity, hypersensitivity, short sharp pain, management, etiology, desensitization, sensitivity.

1. Introduction

Definition: Dentin Hypersensitivity is defined as short, sharp pain arising from exposed dentin in response to stimuli typically thermal, evaporative, tactile, osmotic or chemical and which cannot be ascribed to any other dental defect or pathology. Dowell and Addy 1983
Common terms:

<table>
<thead>
<tr>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentin hypersensitivity/Sensitivity</td>
</tr>
<tr>
<td>Dentinal hypersensitivity/Sensitivity</td>
</tr>
<tr>
<td>Cervical hypersensitivity/Sensitivity</td>
</tr>
<tr>
<td>Root hypersensitivity/Sensitivity</td>
</tr>
<tr>
<td>Cemental hypersensitivity/Sensitivity</td>
</tr>
</tbody>
</table>

Prevalence:
It is more prevalent in patient with age 20-50 years. It is more prevalent in female individuals. The commonly affected site is buccal aspect of the cervical area.

Pathogenesis:
1. Lesion localization
2. Lesion initiation

Lesion localization:
Dentinal tubules are exposed by attrition, abrasion, erosion and abfraction due to loss of enamel leading to loss of protective layer. It can also occur due to gingival recession caused by toothbrush abrasion, pocket reduction surgery, tooth preparation crowns, excessive flossing or secondary to periodontal disease.

Lesion initiation:
For second phase, the localization should be initiated. It occurs after the tubular plugs and the smear layer are removed and dentinal tubules and pulp are exposed to external environment.

Mechanism:
- Direct innervation theory (DI)
- Odontoblast receptor theory (OR)
- Fluid movement/Hydrodynamic theory

Direct innervation theory:
Direct innervation theory reports that the nerve endings penetrate dentin and extend to DEJ, in which the mechanical stimuli directly transmit the pain. Until the tooth erupts, the plexus of Rashkow and intratubular nerves do not establish. However the new erupted tooth can be sensitive too.
Odontoblast receptor theory (OR):
Signals to the pulpal nerves are transmitted by odontoblasts which act as a receptor. Since the cellular matrix of odontoblasts is not capable of exciting and producing neural impulses this theory also been rejected⁸.

Hydrodynamic theory:
Hydrodynamic theory proposed by Brannstorm is the most widely accepted theory for dentin hypersensitivity. According to him, when an appropriate stimulus is applied to the other dentin surface there is displacement of the fluid in the dentinal tubules. It claims that tubules are open between dentin surface which is then exposed to environment and pulp⁹. The intensity of the stimuli form A-delta intradentinal afferent fibers arise from the pulpal nerves. These stimuli include cooling, drying, evaporation and application of hypertonic chemical substances¹⁰.

Clinical features:
The patient present with complain of pain with discomfort, inability to brush the teeth, pain on application of stimuli including cold air, acidic drinks. The degree of pain varies in character, ranging in intensity from mild discomfort to extreme severity which may emanate from single tooth or several teeth. The most common teeth to get affected is first premolar and canine¹¹.

2. Diagnosis:
Conditions similar to Dentin hypersensitivity includes dentinal caries, fractured or chipped enamel, pain as a result of irreversible pulpitis and post bleaching sensitivity¹. Definite diagnosis should be made after excluding all conditions causing dental pain. Dentin hypersensitivity can be diagnosed in a simple clinical method by jet of air or using an exploratory probe on the exposed dentin, after inspecting all teeth which the patient complains of pain in the meso distal direction¹². By using visual analogue scale or categorical scale, the severity of the pain can be quantified as slight, moderate or severe pain¹. Individuals at the risk of dentin hypersensitivity includes¹²:
- Overenthusiastic brushers
- Periodontal treated patients
Removal of etiological factors:
1. Improper tooth brushing: The patient should be taught about proper brushing technique to avoid dentin hypersensitivity. After consuming acid drinks or foods the patient should avoid brushing for at least for one hour and patient should avoid using of abrasive tooth pastes\(^1,3\).
2. Premature contacts: This can be resolved by use of occlusal splint or by correction of occlusion\(^12\).
3. Gingival recession
4. Exogenous and endogenous acids (erosive agents)
5. Poor oral hygiene causes periodontal disease leading to root exposure.

Classification of desensitizing agent\(^10,13,14\): |
A. Mode of administration:
 - At home desensitizing agents
 - In office treatment
B. On the basis of mechanism of action
 - Nerve desensitization e.g., potassium nitrate
 - Cover or plugging dentinal tubule
 - Aluminium
 - Ammonium hexafluorosilicate
 - Calcium hydroxide
 - Calcium phosphate
 - Calcium carbonate
 - Calcium silicate
 - Ions/salts
 - Fluorosilicate
 - Sodium citrate dibasic
 - Potassium oxalate
 - Silicate
 - Sodium Monofluorophosphate
 - Sodium fluoride
 - Sodium fluoride/Stannous fluoride combination
 - Stannous fluoride
 - Strontium acetate with fluoride
 - Strontium chloride
 - Protein precipitate
 - Formaldehyde
 - Glutaraldehyde
 - Silver nitrate
 - Strontium chloride hexahydrate
 - Phytocomplexes
 - Rhubarb Rhaponicum
At home desensitizing methods:
Tooth pastes and tooth dentrifices:
The major role of desensitizing agent is to occlude the dentinal tubules. Nowadays, desensitizing toothpaste mostly contain potassium chloride, potassium citrate and potassium nitrate which have a positive effect on DH. Soft bristled toothbrush should be used and the patient should be educated to use minimum water so that the toothpaste have maximum effects.
Recent studies shows tooth pastes and powders contain arginine. It contains 8% arginine, calcium carbonate and 1450ppm fluoride forming an alkaline atmosphere, leading to precipitation of salivary calcium and phosphate in the dentinal tubules.
Desensitizing mouthwash, chewing gum can be used along with toothpaste and powders containing potassium nitrate, sodium fluoride or potassium citrate After 2-4 weeks, the patient should be reviewed for the result of “at home” therapy. If there is no decline in pain of DH, the patient should start the next stage “in-office” therapy.

In-Office treatment:
The In-office desensitizing therapy theoretically should provide immediate relief. They are classified as:
1. The material that don’t undergo a setting reaction eg- oxalates, varnishes
2. The material that undergo setting reaction eg-composites
3. Lasers
Potassium nitrate:
Available as adhesive gel and aqueous solution. By the axionic action of intra dentinal fibers the potassium ions decrease the nerve excitability that transmit pain³.

Fluorides:
Fluoride has effectiveness in reducing dentin hypersensitivity by precipitating the calcium fluoride crystals which are mostly insoluble inside the dentinal tubules¹⁶. Various other formulations used to treat DH include sodium fluoride, stannous fluoride, Sodium monofluorophosphate, fluorosilicates and fluoride combined with iontophoresis¹. Because of precipitation and acid decalcification fluorides are used to treat DH.

Oxalates:
Oxalates reduce dentinal hypersensitivity by occluding the dentinal tubules. Calcium of dentin react with oxalates forming calcium oxalate in the inside as well as outside of the dentinal tubules thus resulting in sealing of the intact smear layer, since the effect of oxalates reduces due to use of acidic foods the condition can be reversed by etching of the dentinal surface to increase the penetration of crystals into the dentinal tubules¹⁷. Since Potassium oxalate leads to digestive disorder it should not be use for long term⁸.

Varnishes:
Varnishes provide passage for other materials in their therapeutic effect. Copal varnishes covers the exposed dentinal tubules. Since it has short effectiveness it has to be applied more times¹⁸. Fluoride varnishes are also used which acts by combining with acid to increase the effectiveness by penetration of ions.

Adhesive materials:
Inspite of its short effect the adhesive materials have long or permanent action or effect. It includes bonding agents, varnishes, resin composites. The hybrid layer formed by old adhesive is by etching the dentinal surface through removing the smear layer¹⁹. The deep dentinal resin tags were formed by conventional dentin bonding agents(DBA). Hybrid layer is termed as combination of penetrating resinous tags in Dentin- resin layer²⁰. Recently, Gluma shows good results in management of DH in clinical trials²¹.

Bioglass:
Bioglass stimulates bone formation during periodontal surgery to fill osseous defects²⁰. Formulation of bioglass promotes dentinal tubules remineralization and infiltration²². The basic component silica act as nucleation site for calcium and phosphate precipitation. Occlusion of dentinal tubules are formed by formation of apatite layer by bioglass²².

Laser:
Acronym for Laser is LIGHT AMPLIFICATION BY STIMULAYED EMISSION OF RADIATION. Mechanism of action, its effect on dentine and reducing DH includes:

I. Occlusion by coagulation of proteins of fluid inside dentinal tubules
II. Occlusion of tubules by partial sub melting
III. Discharging of internal tubular nerve

Recent advances:
Arginine, an amino acid occurring naturally in saliva and calcium carbonate provide relief for DH. Pro-Argin contains 8% arginine and calcium carbonate seal dentinal tubules which are exposed. It has been suggested that Pro Argin mouthwash or paste provide relief for dentin hypersensitivity.

NovaMin® contains 15% Calcium Sodium PhosphoSilicate (CSPS) is based on bioglass technology. The CSPS releases sodium ions resulting in rapid formation and precipitation of calcium hydroxyapatite mineral layer on the dentin surface in aqueous environment. It is effective only as an in-office treatment.

Recent advance in nanotechnology uses three layered guided tissue regeneration for DH with localized gingival recession.

Casein phosphopeptide amorphous calcium phosphate:
Milk protein casein is used as a remineralizing agent. The casein phosphopeptide (CPP) contains phosphoseryl gets attached and stabilized with amorphous calcium phosphate (ACP).

3. Conclusion:
To conclude, Dentin hypersensitivity is a common dental complaint, and prior to treatment a differential diagnosis is critical. Identification of the various risk factors should be ascertained and a determination should be made of whether the pain is localized or generalized. Unfortunately, most currently available tests are subjective. Ideally, a more objective technique is required in order to adequately quantify patients' response.

4. Discussion:
Dentin hypersensitivity as a chronic disease is increasingly prevalent among adults and some researches have been done on determining etiologic factors in the causation of the disease, its diagnosis, and its treatment. This disorder usually occurs as the result of the loss of enamel and cementum or exposure of dentinal tubules. There have been many methods and materials to reduce or remove sensitivity. They include the use of tubes of toothpaste containing potassium salts, fluoride composites, resins, laser; bioglass, and so on. They exert their effects by sealing dentinal tubules or by disturbing the transmission of nerve impulses. Etiologic factors have been underestimated by dentists or specialists in the treatment of DH. Based on studies, different theories have been proposed on the dentin hypersensitivity, in which direct innervation theory and odontoblast receptor theory had some challenges. However, Hydrodynamic theory by Brannstorm deals with the flow of fluid inside the dentinal tubules is readily accepted. Still, the most common therapy and usually the first therapy in treating dentin hypersensitivity is the use of kinds of toothpaste containing potassium salts and fluoride. The new offered materials and methods, such as bioglasses, CPP-ACP, laser, iontophoresis, and homeopathy for the treatment of DH have been tested through studies and the obtained results have been different. The use of laser in the treatment of dentin
hypersensitivity is more recommendable among patients. Moreover, the use of it has no negative impact and this is promising.

5. Reference:

