A Study Of Preprocessing Techniques And Features For Ovarian Cancer Using Ultrasound Images

Ms. Arathi Boyanapalli¹, Dr. Shanthini A²

¹Research Scholar, Department of Computer Science and Engineering, SRMIST, Kattankulathur, Chennai
²Associate Professor, Department of Information Technology, SRMIST, Kattankulathur, Chennai

Abstract: Ovarian Cancer is the third leading cancer among women in India. The early detection-rate of ovarian cancer is very low [1]. Transvaginal ultrasound is the most common screening test to detect the presence of tumors but adnexal masses are very common in patients, the challenging part is to discriminate whether the masses are benign or malignant. This distinction is very essential for optimal surgical management, but reliable pre-surgical differentiation is sometimes difficult using clinical features, ultrasound examination, or tumor markers alone[2]. Recent trends in medical imaging facilitate the detection of most cancers at a very initial stage. Still, an ovarian cancer diagnosis is not accurate. The patient has to undergo painful practices such as biopsies or surgeries, even with benign nodules. Ultrasound images with deep learning techniques in ovarian cysts help in diagnosis whether the cyst is benign or malignant at a very early stage without any surgeries. This method not only cuts the medical expenses of the patient but also reduces the mental stress of the patients.

Keywords: Ovarian Cancer detection, Deep Learning, Ultrasound Images, Neural Networks

1. INTRODUCTION

Ovarian cancer is a category of cancer to effects the ovaries. The female reproductive system consists of two ovaries. Ovarian cancer is often detected when it is spread to the pelvis and abdomen, it is very hard to treat at this stage as ovarian cancer can be successfully treated when the disease is confined to the ovary. The patient has to undergo surgery and chemotherapy to treat ovarian cancer. Ovarian cancer can be classified as epithelial tumors, Stromal tumors, and Germ cell tumors. Epithelial tumors begin in the thin layer of tissue that covers the ovaries, 90% of ovarian cancers are epithelial tumors. Stromal tumors begin in the ovarian tissue that contains hormone-producing cells, 7% of ovarian tumors are stromal. Germ cell tumors begin in egg-producing cells. This is rare cancer which generally occurs in younger women [3]
Ultrasound Imaging is the most convenient and secure method for the diagnosis of internal organs. Many imaging tools can be used to scan internal organs such as Magnetic Resonance Image (MRI), Computerized Tomography (CT), but ultrasound images can be easily portable. Ultrasound images are less expensive, safe, and very useful in diagnosing the infections of the internal organs[4][5]. Ovarian Cancer is one of the most frequently occurring cancers in women, according to statistics nearly 93% of the patients can be survived if cancer can be detected at an early stage, but only 20% of the cases can be diagnosed due to the availability of non-accurate methods [6]. Tumors are common in patients but it is very challenging to differentiate whether the tumor is benign or malignant. The patient has to undergo painful practices such as biopsies or surgeries that cause mental stress to the patient. The introduction of Deep Leaning in medical imaging has made a great impact on health care and other sectors too. Radiology has seen significant developments with Deep Learning which provides better judgment while lowering healthcare costs [7].

1.1 Relevant Terms

Some of the frequently used architectures for image processing are discussed below.

Convolution Neural Network: convolutional neural network also called CNN/ ConvNet. It is a Deep Learning algorithm essentially images are given as input and the algorithm can assign importance to different objects in the image. CNN requires very little pre-processing as compared to other classification algorithms. While in primitive methods filters are hand-engineered, with enough training, ConvNets can learn these filters/characteristics[8]. Feature extraction and classification are the major parts of the convolutional neural network. Input Layer, Convolutional Layer, and Pooling Layer are the layers of feature extraction. Fully connected nodes and Output Layer are the layers of classification. The output can be either binary or multiclass classification.

![Figure 1.1](image)

VGGNet: A CNN architecture proposed by Karen Simonyan and the Andrew of the Zisserman university of Oxford in 2014[10]. ImageNet dataset is used to pre-train the CNN model. The input is an RGB image with 224 * 224 pixels. Pre-processing Layer subtracts the
mean image values from pixel values of 0-255. This pre-processing is adapted for the whole ImageNet dataset. The images after pre-processing are passed through a set of convolution layers. VGGNet has two types depending on the number of convolutional layers. They are VGG16 and VGG19. VGG16 consists of 13 convolutional layers and 3 fully connected layers. VGG19 consists of 16 convolutional layers and 3 fully connected layers, both the variants have 5 max pool layers. VGG16 and VGG19 can predict 1000 labels, last fully connected layer consists of the softmax layer, used for classification.

Figure 1.2 VGG16 architecture

AlexNet: AlexNet is a powerful model that achieves great accuracies on very challenging datasets. AlexNet is one of the most preferred architecture for object detection tasks and very useful in the applications of computer vision and artificial intelligence. Some new approaches incorporated are Relu Nonlinearity, Multiple GPUs, Overlapping Pooling [11].

Figure 1.3 AlexNet architecture[12]

GoogLeNet: GoogLeNet is evidenced to be a suitable classifier for images. GoogLeNet is the ILSVRC classification champion in 2014. GoogLeNet has of 27-layers that consist of an inception layer which is a combination of 1x1, 3x3, and 5x5 convolutional layers, whose output is combined into a single output and given as input to the next stage.[13]
2. RELATED WORKS:

In recent years there are several studies for automated early detection and classification of ovarian cancer. In a study [14] convolutional neural networks, a fully connected residual network and a U-Net with the binary and multiclass approach. The models are trained with five different types of ultrasound data which varied from beam-formed radio frequency to brightness mode. The best results are provided by B-mode for ovary and follicles segmentation on both the models. The multiclass classification was beneficial as it provided the spatial relationship between follicles and ovary. C. Wu et. al.[15] used VGGNet, DenseNet, ResNet, GoogleNet models on 988 ultrasound images for the classification of ovarian cancer and best performance using GoogleNet model, The accuracy provided by GoogleNet model is 92.50%. M. Ahmad et. al.[16] used a new fuzzy histogram equalization technique on the fuzzy normalized histogram of an image. The effectiveness of the algorithm is justified over MRI images, CT scan images, and Ultrasound images and attained 20% to 35% enhancement in the identification of ovarian cancer as compared to traditional image processing solutions. U. Rajendra Acharya et al. [17] used Probabilistic Neural Networks (PNN) classifiers for classifying images into benign and malignant. The Gabor transform parameters and entropies are first extracted from the ultrasound images and then trained to a PNN model. The model with 1300 benign images and 1300 malignant images provides the best performance using the Genetic Algorithm and evaluated with 10-fold cross-validation with an accuracy of 99.8%, the sensitivity of 99.2 %, and specificity of 99.6 % with an σ of 0.264. S. Khazendar et al.[18] used transvaginal 2D B mode ultrasound images are pre-processed and enhanced. Local Binary Pattern Histograms are extracted from each image. An SVM model is used to train the images using stratified cross-validation with 100 random samples selected for each round repeating the process 15 times. This model achieved 77% accuracy with Local Binary Pattern operator. D. Timmerman et al.[19] proposed a method for which data is collected from 9 European centers in which 800 patients have benign tumors and 266 has malignant tumors, 12 variables are considered for the logistic regression model and achieved an accuracy of 95%.
3. COMPARISON:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Dataset</th>
<th>Sample size</th>
<th>Features</th>
<th>classification and accuracy</th>
<th>Highlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>[20]</td>
<td>Used a combination of open source and generated dataset.</td>
<td>Total Samples:
Training: 2745
Validating: 549
Testing: 549</td>
<td>Low-Level texture features:
The Low-level features that are extracted from the images are Uniform Local Binary Pattern (ULBP)</td>
<td>• VGNet - 97.12 % accuracy
• AlexNet - 98.29 %
• FCNN - 93.08 %
• CNN - 92.06 %
• GoogleNet - 96.68 %
• Random Classifier - 99.15%</td>
<td>1) Data Expansion Method for augmentation of data
2) The deep features are extracted and combined with texture features.
3) 10-fold cross-validation is used</td>
</tr>
<tr>
<td></td>
<td>Malignant Samples:
Training: 2340
Validating: 459
Testing: 450</td>
<td>Benign Samples:
Training: 452
Validating: 101
Testing: 99</td>
<td>high-level deep features:
GoogLeNet is finely tuned to normalize ULBP features and combined with high-level features.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Open Source: 428 ultrasound images of 560 x 360 pixels
• 357-malignant samples
• 71-benign samples</td>
<td>Realtime dataset: 1400 ultrasound images
• 277 samples of ovary</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The real-time dataset generated in the Institute of Tokyo Women’s Medical University Medical Center East was used under the approval of the Institutional Review Board (IRB).

Sample Size:
- 53 - ovarian cancers,
- 23 - borderline malignant tumors
- 126 - benign ovarian tumors.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support vector machine</td>
<td>62.4 % accuracy</td>
</tr>
<tr>
<td>Random Forest</td>
<td>78.1 % accuracy</td>
</tr>
<tr>
<td>Naive Bayes</td>
<td>62.2 % accuracy</td>
</tr>
<tr>
<td>Logistic Regression</td>
<td>67.1 % accuracy</td>
</tr>
<tr>
<td>XGBoost</td>
<td>80.4 % accuracy</td>
</tr>
</tbody>
</table>

Best Predictive features: albumin, ascites, and CRP

Best Regression coefficient: CA125, CA19-9, and CRP

Best Features: platelet, albumin, and CA125 were the top 3 hits in the feature importance of random forest.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Source</th>
<th>Dataset Description</th>
<th>Methodology</th>
<th>Model Details</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>[22]</td>
<td>Generated</td>
<td>The Dataset is divided into 100,200,300,400 and 500 images taken during different stages of pregnancy</td>
<td>Logistic Regression classifier</td>
<td>Precision - 96.5, Recall - 99.1</td>
<td>The ML-CNN is a method that uses a combination of the machine learning algorithm and convolution neural network for the diagnosis of an ovarian tumor during pregnancy. The proposed model is integrated with the IoMT platform.</td>
</tr>
<tr>
<td>[23]</td>
<td>Generated</td>
<td>240 Ultrasound Images with normal and cyst. Training: 160, Validation: 80</td>
<td>VGG16</td>
<td>92.11%</td>
<td>1) Imagenet dataset is used for pre-training the model. 2) VGG-16 model is used and the modification is done on the last four layers of the neural network.</td>
</tr>
</tbody>
</table>
Filter, Fractal Dimension, Histogram of Gradient, Local Binary Pattern (LBP-256 Bins), 7-moment s, Uniform LBP (ULBP-59), Statistics Histogram, Skewness, Kurtosis.

The relief-f method is used for feature selection from the extracted non-linear features and 39 features are selected using the relief-f method from 796 features.

KNN (K=5) - 67.16%
Random Forest: 63.75%
FRNN - 71.86%
Fuzzy Forest - 80.60%

1) 10-fold cross-validation
2) The separate datasets are created with 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, and 469 samples and balanced to keep the benign and malicious instances the same in every dataset.
4. DISCUSSION

Ovarian cancer ranked 5th in cancer deaths. Early detection of ovarian cancer helps in curing the disease. A cyst in the ovary can be benign or malignant, to find the cyst to be malignant or benign the patient has to undergo surgery or biopsy. This leads to unnecessary medical expenses and trauma to the patients. Detecting ovarian cancer through ultrasound images can help to decrease deaths due to ovarian cancer and the medical expenses of the patient. Deep Learning techniques can help in the detection of ovarian cancer in ultrasound images. This research can be further extended to MRI and CT scan images too, but ultrasound machines are less expensive and easily available in all the hospitals. The different pre-processing techniques and deep learning algorithms can improve the accuracy of ovarian cancer detection.

5. REFERENCES

