• Register
  • Login

European Journal of Molecular & Clinical Medicine

  • Home
  • Browse
    • Current Issue
    • By Issue
    • By Subject
    • Keyword Index
    • Author Index
    • Indexing Databases XML
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Indexing and Abstracting
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
Advanced Search

Notice

As part of Open Journals’ initiatives, we create website for scholarly open access journals. If you are responsible for this journal and would like to know more about how to use the editorial system, please visit our website at https://ejournalplus.com or
send us an email to info@ejournalplus.com

We will contact you soon

  1. Home
  2. Volume 7, Issue 9
  3. Authors

Online ISSN: 2515-8260

Volume7, Issue9

EUGENOL-LOADED CHITOSAN NANOPARTICLE INDUCES APOPTOSIS, INHIBITS CELL MIGRATION AND EPITHELIAL TO MESENCHYMAL TRANSITIONPROCESS IN HUMAN CERVICAL CANCER CELL LINE HELA CELLS.

    Happy Kurnia P Dhanang Puruhita T R Muhammad Nazhif H Rizq Threevisca C

European Journal of Molecular & Clinical Medicine, 2020, Volume 7, Issue 9, Pages 1184-1197

  • Show Article
  • Download
  • Cite
  • Statistics
  • Share

Abstract

Eugenol is a phenylpropanoid group compound found in cloves, nutmeg,
cinnamon, and bay leaves. Apart from being used as a cosmetic, perfume, and food
ingredient, eugenol is known to have an antioxidant, antibacterial, anti-inflammatory, and
anti-cancer profile. Eugenol has therapeutic potential by increasing reactive oxygen
species formation, decreasing anti-apoptotic protein Bcl-2, increasing the release of
cytochrome c that leads to apoptosis in cancer cells, and inhibit the epithelial to
mesenchymal transition (EMT) process that could reduce the cell ability to migrating.
We synthesized eugenol loaded chitosan nanoparticles (Nano-EU) by ionic gelation
method to overcome its shortcoming which is volatile and to increase its bioavailability.
The nanoparticles were characterized by using Dynamic Light Scattering (DLS).
Anticancer activity of Nano-EU was investigatedin cervical cancer HeLa cell line by flow
cytometry using Annexin-V/PI staining, and by measuring cleaved-caspase-3 protein
expression which is the executor of the apoptosis process by immunofluorescence.
The results of the study evidenced that Nano-EU inducing apoptosis and increasing
activated caspase-3 expression in HeLa cells. Nano-EU could also inhibit cell migration by
reducing vimentin and Snail as mesenchymal markers leading to inhibition of the EMT
process. Further research is still needed to investigate the anticancer potential of Nano-EU
in HeLa cells to in vivo and clinical studies.
Keywords:
    Eugenol Nanoparticles Chitosan apoptosis EMT HeLa cells
  • PDF (775 K)
  • XML
(2020). EUGENOL-LOADED CHITOSAN NANOPARTICLE INDUCES APOPTOSIS, INHIBITS CELL MIGRATION AND EPITHELIAL TO MESENCHYMAL TRANSITIONPROCESS IN HUMAN CERVICAL CANCER CELL LINE HELA CELLS.. European Journal of Molecular & Clinical Medicine, 7(9), 1184-1197.
Happy Kurnia P; Dhanang Puruhita T R; Muhammad Nazhif H; Rizq Threevisca C. "EUGENOL-LOADED CHITOSAN NANOPARTICLE INDUCES APOPTOSIS, INHIBITS CELL MIGRATION AND EPITHELIAL TO MESENCHYMAL TRANSITIONPROCESS IN HUMAN CERVICAL CANCER CELL LINE HELA CELLS.". European Journal of Molecular & Clinical Medicine, 7, 9, 2020, 1184-1197.
(2020). 'EUGENOL-LOADED CHITOSAN NANOPARTICLE INDUCES APOPTOSIS, INHIBITS CELL MIGRATION AND EPITHELIAL TO MESENCHYMAL TRANSITIONPROCESS IN HUMAN CERVICAL CANCER CELL LINE HELA CELLS.', European Journal of Molecular & Clinical Medicine, 7(9), pp. 1184-1197.
EUGENOL-LOADED CHITOSAN NANOPARTICLE INDUCES APOPTOSIS, INHIBITS CELL MIGRATION AND EPITHELIAL TO MESENCHYMAL TRANSITIONPROCESS IN HUMAN CERVICAL CANCER CELL LINE HELA CELLS.. European Journal of Molecular & Clinical Medicine, 2020; 7(9): 1184-1197.
  • RIS
  • EndNote
  • BibTeX
  • APA
  • MLA
  • Harvard
  • Vancouver
  • Article View: 268
  • PDF Download: 467
  • LinkedIn
  • Twitter
  • Facebook
  • Google
  • Telegram
Journal Information

Publisher:

Email:  editor.ejmcm21@gmail.com

  • Home
  • Glossary
  • News
  • Aims and Scope
  • Privacy Policy
  • Sitemap

 

For Special Issue Proposal : editor.ejmcm21@gmail.com

This journal is licensed under a Creative Commons Attribution 4.0 International (CC-BY 4.0)

Powered by eJournalPlus