A REVIEW STUDY ON THE RELATIONSHIP AMONG COVID-19 AND CARDIOVASCULAR DISEASE

Dr. Sankaralingam P Professor & HOD¹,
Dr. Vijaya Suriya R Senior Resident²

Meenakshi Academy of Higher Education and Research
sankaralingamp@mmchri.ac.in

Abstract

In the scenery for Coronavirus Disease 2019 (COVID-19), the early data has indicated a decline in presentation and an improvement in pre-hospital latency for acute patients with stroke or AMI,³,⁴ the condition in Michigan, but it is not clear how acute stroke and AMI (COVID-18) should be administered and how these are treated. In reported cases and deaths, COVID-19 has had a disproportionate effect on Black Americans. Blacks make up about 14 percent of the population in Michigan but 19 percent of cases of COVID–19 and 36% of the deaths by October 22, 2020.⁵ The rise in the incidence of pre-hospital delay among Black Americans which further worsen established racial disorders⁶ compared with their white counterparts. We wanted to use a quick appraisal methodology in order to advise existing and prospective public health camps, both locally and globally, because of the pressing repercussions for clinical and public health.

Keywords: COVID-19, Pandemic, Cardiovascular Disease

BACKGROUND

Covid-19, the extreme SRAS-CoV2 coronavirus acute respiratory syndrome, has caused more than 39 million infected and 1 million worldwide deaths since the first cases recorded in the Chinese City of Wuhan in December 2019. The condition may progress rapidly from fever, toughness, shortness of breath and scent and taste changes to acute respiratory arrest, septic shock. The lipidom of corrupted calls is well known to be restored by SARS-CoV and
MERS-CoV. Therefore, this letter is aimed at introducing and debating the details available in COVID-19 patients on improvements in lipid metabolites found1-3.

Various research efforts have in reality begun to report the metabolic feature of COVID-19 alterations. The hallmark characteristics are i) a decrease in LDL and HDL-c levels in lipoproteins, later relative to the severity of the symptoms, and ii) a mild rise in T helpers' cell population (CD3+T, CD4+ T) or CD8+T lymphopenia (suggesting potential invasion of certain cells or exhaustion of the immune system) and iii) hyper-inflammation. Hyper-inflammatory disorders are characterised by The overall count of White Blood Cells was also slightly higher in those who were seriously affected, although the involvement of monocyte-recruiting chemokines in bronchoalveolar fluid was reported as a macrophage activation syndrome in those with serious respiratory failure4-8.

COVID AND RNA

CoronaVirus Infection with CoronaVirus 2 Severe Acute Respiratory Syndrome 19 (COVID-19) is caused by the infection (SARS-CoV-2). Although COVID-19 is primarily respiratory clinical, many patients may have acute myocardial injuries and chronic cardiovascular injury. In order to identify optimal health treatment methods, including overt and indirect disruption to the heart and the vascular system caused by SARS-CoV-29-12. A closely regulated gene expression of the homeostasis of the cardiovascular system includes various forms of RNA molecules, such as RNA encoding proteins (messgers RNAs) and those without protein encoding potentials (non-coding RNAs). In recent years, non-coding RNAs dysregulation has appeared to be a key component of nearly any cardiovascular disorder in pathophysiology. Here we will address the possible role and usage as biomarkers for clinical use of non-coding RNAs in COVID-19 disease mechanisms13-17.

CoronaVirus 2 (SARS-CoV-2), a novel man isolated from 7 January 2020, was identified as a source of unexplained cases of acute respiratory disruptions (ARDS) observed in the city of Wuhan, Hubei, China and was then identified as Coronavirus 2019 (COVID-19). As a result of the accelerated global dissemination of the COVID-19, more than 43 million cases have been confirmed and over 1 million deaths have been observed globally by the Director General of the World Health Organisation (WHO) as a pandemic by October 27 202018,19.

COVID-19 is primarily medicinal in its respiratory manifestations. Many patients, however, still show serious cardiovascular involvement. The overt and indirect damage to the SARS-
CoV-2 cardiovascular system, and the underlying pathogenetic pathways, is therefore of utmost importance20,21.

COVID AND CARDIOVASCULAR DISEASE

In this section we will discuss the role of transcriptomics in our interpretation of the processes of human cardiovascular coronavirus disease and in defining possible clinical application biomarkers. In specific, we are focusing on non-coding RNAs (ncRNAs), an evolving class of regulatory RNAs. Because of their fundamental role in the regulation of gene expression, ncRNAs are promising candidate countries to consider the cardiovascular system implications of SARS-CoV-2 infection. In addition, as a result of improvements in the attitudes of patients and the healthcare behaviour and health sector reorganisation, the pandemic has had secondary impacts beyond the immediate effects of COVID-19 on people of all countries. Therefore it is important to consider the indirect impact of the pandemic on non-communicable diseases both for disease risk and for availability of health care to prepare and adapt the responses to current and possible risks to public health22–26. The main causes of death and morbidity in the UK and internationally are cardiovascular diseases (CVDs). In addition, the preceding CVD is an important risk factor for COVID-19 complications and mortality. Government advice has instructed people on physical separation of CVD to pay careful attention. Concerns over services after the pandemic, from prevention to recovery, have been addressed and statistics from several countries which have indicated decreased service operation have been promoted. Official national figures suggest a host of non-COVID-9 deaths and CVDs and a drop in the attendance of cardiac emergency departments (ED) in the UK have also been noted for drops in activities across CVDs27–32.

DISCUSSION

In addition to regular primary and secondary care reports, several national CVD disease-specific audits are available. These outlets, however, frequently fall behind in real-time some weeks or months, cannot cover the United Kingdom's devolved nations and are not currently available for review. Changes in service delivery happening through the pandemic need to be determined for audit, quality management, surveillance and to advise policy responses. In the aftermath of the pandemic, it has been seen that open, public-oriented knowledge has a real benefit both for patients, the public, academics, physicians and politicians33–36.

5680
Coronavirus-2 Extreme ART (SARS-CoV-2) is a member of the Wuhan City, Chinese RNA family beta-human coronavirus. On 12 December 2019 the case of COVID-19 first was admitted to the centre and the patients’ primary process was first identified on 6 January 2020. In mid-January 2020 also the transmission of people to people was seen. Since 4 February 2020, 3rd and 4th transmitting processes have had to be taken into consideration. In Wuhan, China revealed the scene of atypical SARS-CoV-2 pneumonia. The country has been transmitted uniformly by pollution since December 2019. Effective on 2 March 2020, more than 89 000 cases of COVID-19 have been reported from all regions of China, and 66 countries worldwide. The European Center for Ailment prevention and surveillance. This beta coronaviruses are seven species that have caused human infections. There were four forms of coronavirus that displayed prevalent symptoms, including small bit phlegm, but symptoms were potentially lethal for SARS (Severe ARS), MERS (Middle East Respiratory Syndrome) and COVID-19. Cardiometabolic demand associated with simple emissions and hypoxia symptoms can reduce myocardial oxygenal requests due to severe respiratory distress — gracefully connected which may lead to serious myocardial infarction. An increased shear issue caused by fundamental discomfort will lead to intensive myocardial-localized necrosis just as extended coronary blood stream. The prothrombotic environment created by simple agitation further raises the risk of coronary and plaque breakdown. The electrolyte can be imbalanced and cause arrhythmia precipitation as this can be seen with patients with cardiac dysfunction due to total disease. The activity of COVID-19 mechanism renin-angiotensin aldosterone may cause hypokalemia in patients with COVID-19, which may result in enhanced tachyarrhythmia being at risk of quick fatality and mortality.

REFERENCES:

<table>
<thead>
<tr>
<th>No.</th>
<th>Reference</th>
</tr>
</thead>
</table>

