• Register
  • Login

European Journal of Molecular & Clinical Medicine

  • Home
  • Browse
    • Current Issue
    • By Issue
    • By Subject
    • Keyword Index
    • Author Index
    • Indexing Databases XML
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Indexing and Abstracting
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
Advanced Search

Notice

As part of Open Journals’ initiatives, we create website for scholarly open access journals. If you are responsible for this journal and would like to know more about how to use the editorial system, please visit our website at https://ejournalplus.com or
send us an email to info@ejournalplus.com

We will contact you soon

  1. Home
  2. Volume 7, Issue 11
  3. Author

Online ISSN: 2515-8260

Volume7, Issue11

A Novel Approach To Doctor’s Decision Making System Using Q Learning

    K. C. Sreedhara, M. Swathib

European Journal of Molecular & Clinical Medicine, 2020, Volume 7, Issue 11, Pages 4203-4209

  • Show Article
  • Download
  • Cite
  • Statistics
  • Share

Abstract

The e-Health care system enables us to store patient’s personal health record online. Now a days, doctor’s decisions on health of patients is gaining importance in treating serious diseases. The overall health of human body can be subjected to many clinical parameters like random blood sugar level, white blood cell count etc. In addition to clinical parameters, the state of set of symptoms of all diseases contributes to overall well-being of a human being. Due to this the health of a human body can be decided by a set of parameters which include clinical parameters that decide the health of various organs in our body and symptoms associated with various diseases. Each of the clinical parameter can be associated with a reward based on its value being fallen in a particular bin. Also symptoms can be associated with a reward based on its intensity. The doctor will take many actions against a patient such as giving appropriate medication in course of tablets, operating surgeries, giving salination etc. So this system consists of set of clinical parameters and symptoms together as states in a model of machine learning. The set of actions taken by the doctor constitute actions of an agent where doctor is treated as an agent in this model. So a set of clinical parameters and symptoms were taken and a specified number of actions is taken to assess the performance of model in basic reinforcement learning learning and epsilon-greedy approach of machine learning. Results show that Q learning outperforms reinforcement learning and epsilon-greedy approach and these results enable the doctor for better decision making.
Keywords:
  • PDF (514 K)
  • XML
(2021). A Novel Approach To Doctor’s Decision Making System Using Q Learning. European Journal of Molecular & Clinical Medicine, 7(11), 4203-4209.
K. C. Sreedhara, M. Swathib. "A Novel Approach To Doctor’s Decision Making System Using Q Learning". European Journal of Molecular & Clinical Medicine, 7, 11, 2021, 4203-4209.
(2021). 'A Novel Approach To Doctor’s Decision Making System Using Q Learning', European Journal of Molecular & Clinical Medicine, 7(11), pp. 4203-4209.
A Novel Approach To Doctor’s Decision Making System Using Q Learning. European Journal of Molecular & Clinical Medicine, 2021; 7(11): 4203-4209.
  • RIS
  • EndNote
  • BibTeX
  • APA
  • MLA
  • Harvard
  • Vancouver
  • Article View: 134
  • PDF Download: 218
  • LinkedIn
  • Twitter
  • Facebook
  • Google
  • Telegram
Journal Information

Publisher:

Email:  editor.ejmcm21@gmail.com

  • Home
  • Glossary
  • News
  • Aims and Scope
  • Privacy Policy
  • Sitemap

 

For Special Issue Proposal : editor.ejmcm21@gmail.com

This journal is licensed under a Creative Commons Attribution 4.0 International (CC-BY 4.0)

Powered by eJournalPlus