Modified Zagreb Indices of Product of Graphs

DhanalakshmiK¹, SelvaraniP², IrudayaMonicaCatherineJ³
¹²³DepartmentofMathematics,HolyCrossCollege,Trichy620002,India
(e-mail:dhanalakshmi.kannusamy@gmail.com)

Abstract

In this paper, we obtain the oremson modified Zagrebindex of Cartesian product, Strong product and Tensor product of graphs. Graph slike path and cycle are considered in this work.

MATHEMATICS Subject Classification: 05C15, 05B20.

Keywords: Modified Zagreb indices; Product graphs; Graph Operators.

1 Introduction

In this article, we are concerned with simple graphs, that is finite and undirected graphs without loops or multiple edges. Let G be such a graph and V(G) and E(G) be its vertex set and edge set respectively. An edge of G, connecting the vertices u and v will be denoted by uv. The degree d(v) of a vertex vєV(G) is the number of vertex of G adjacent to v. The most elementary constituents of a (molecular) graph are vertices, edges, vertex-degrees, walks and paths[7]. They are the basis of many graph-theoretical invariants referred to as topological index, which have found considerable use in Zagreb index. The Modified first Index is denoted by \(m_1(G) \), and defined as \(m_1(G) = \sum_{v \in V(G)} \frac{1}{d(v)^2} \). These have been conceived in the 1970s and found considerable applications in chemistry[2,5,6]. The Zagreb indices were subject to a large number of mathematical studies, of which we mention only a few nearest [3,4].

The Cartesian Product G□H is a graph such that, the vertex set of G□H is the Cartesian product V(G)×V(H) and two vertices (u,u') and (v,v') are adjacent in G□H if and only if either u=v and u' is adjacent to v' and u is adjacent to v in G. The Strong Product G☒H is the Cartesian product V(G)×V(H) and distinct vertices (u,u') and (v,v') are adjacent in G☒H if and only if either u=v and u' is adjacent to v' or u'=v' and u is adjacent to v or u is adjacent to v and u' is adjacent to v'. The Tensor Product G×H of graphs G and H is a graph such that, the vertex set of G×H is the Cartesian product V(G)×V(H) and distinct vertices (u,u') and (v,v') are adjacent in G×H if and only if u is adjacent to v and u' is adjacent to v'.

All the definitions and notations in graphs and digraphs, which are not mentioned in this paper, one may refer[1].

2 MAIN RESULTS

In this section, we obtain results on modified first Zagreb indices of Cartesian, strong and Tensor product of paths and cycles.

2163
Theorem 1:

The Modified first Zagreb index G of a Cartesian product of two path p_n and p_m is

$$mM_1(G) = \frac{9nm + 14n + 14m + 52}{144}$$

Proof:

The Cartesian Product of two path p_n and p_m has 4 vertices of degree 2, 2n-4 vertices degree 3, 2m-4 vertices degree and 3(nm-2n-2m+4) vertices of degree 4, then the Modified first Zagreb index G is

$$mM_1(G) = \sum_{v \in V(G)} \frac{1}{d(v)^2}$$

$$= \frac{4}{2^2} + \frac{2n-4}{3^2} + \frac{2m-4}{3^2} + \frac{nm-2n-2m+4}{4^2}$$

$$= \frac{4}{2^2} + \frac{2n-4}{9} + \frac{2m-4}{9} + \frac{nm-2n-2m+4}{16}$$

$$= \frac{144 + (2n-4)(16) + (2m-4)(16) + (nm-2n-2m+4)(9)}{144}$$

$$= \frac{144 + 32n-64 + 32m-64 + 9nm + 8n + 18m + 36}{144}$$

$$= \frac{9nm + 14n + 14m + 52}{144}$$

Figure 1

![Figure 1](image1.png)

Theorem 2:

The Modified first Zagreb index G of a strong product of two path p_n and p_m is

$$mM_1(G) = \frac{225nm + 702n + 702m + 2692}{14400}$$

Proof:

The strong product of two path p_n and p_m has 4 vertices of degree 3, 2n-4 vertices of degree 5, 2m-4 vertices of degree 5 and (nm-2n-2m+4) vertices of 8, then the Modified first Zagreb index
The Modified first Zagreb index G of a Tensor product of two path p_n and p_m is

$$mM_1(G) = \frac{nm+6n+6m+36}{16}$$

Proof:

The Tensor product of two path p_n and p_m has 4 vertices of degree 1, 2n-4 vertices of degree 2, 2m-4 vertices of degree 4 and (nm-2n-2m+4) vertices of degree 4, then the Modified first Zagreb index G is

$$mM_1(G) = \sum_{v \in V(G)} \frac{1}{d(v)^2}.$$
Theorem 4:
The Modified first Zagreb index G of a Cartesian product of two cycle c_n and c_m is

$$mM_1(G) = \frac{nm}{16}$$

Proof:
The Cartesian product of two cycle c_n and c_m has nm vertices of degree 4, then the Modified first Zagreb index G is

$$mM_1(G) = \sum_{v \in V(G)} \frac{1}{d(v)^2}$$

$$= \frac{nm}{16}$$

Theorem 5:
The Modified first Zagreb index G of a strong product of two cycle c_n and c_m is

$$mM_1(G) = \frac{225\cdot nm + 350n + 350m + 900}{14400}$$

Proof:
The strong product of two cycle c_n and c_m has 4 vertices of degree 5, $2n-4$ vertices of degree 6, $2m-4$ vertices of degree 6 and $(nm - 2n - 2m + 4)$ vertices of degree 8, then the Modified first Zagreb index G is

$$mM_1(G) = \sum_{v \in V(G)} \frac{1}{d(v)^2}$$

$$= \frac{4 \cdot 2n - 4}{6^2} + \frac{2m - 4}{6^2} + \frac{nm - 2n - 2m + 4}{8^2}$$

$$= \frac{2304 + (2n - 4)\cdot 400 + (2m - 4)\cdot 400 + (nm - 2n - 2m + 4) \cdot 225}{14400}$$

$$= \frac{2304 + 800n - 1600 + 800 - 1600 + 225nm - 450n - 450m + 1800}{14400}$$

$$= \frac{225nm + 350n + 350m + 900}{14400}$$
Theorem 6:

The modified first Zagreb index G of a tensor product of two cycle c_n and c_m is

$$mM_1(G) = \frac{nm+6n+6m+36}{16}$$

Proof:

The Tensor product of two cycle c_n and c_m has 4 vertices of degree 1, 2n-4 vertices of degree 2, 2m-4 vertices of degree 2 and (nm-2n-2m+4) vertices of degree 4, then the modified first Zagreb index G is

$$mM_1(G) = \sum_{v \in V(G)} \frac{1}{d(v)^2}$$

$$= \frac{4}{1^2} + \frac{2n-4}{2^2} + \frac{2m-4}{2^2} + \frac{nm-2n-2m+4}{4^2}$$

$$= \frac{64+(2n-4)+4+(2m-4)+4+(nm-2n-2m+4)}{16}$$

$$= \frac{64+8n-16+8m-16+nm-2n-2m+4}{16}$$

$$= \frac{nm+6n+6m+36}{16}$$

Theorem 7:

The Modified first Zagreb index G of a Cartesian product of path p_n and cycle c_m is

$$mM_1(G) = \frac{9nm+14m}{144}$$

Proof:

The Cartesian product of path p_n and cycle c_m has 2m vertices of degree 3 and (nm-2m) vertices of degree 4, then the Modified first Zagreb index G is

$$mM_1(G) = \sum_{v \in V(G)} \frac{1}{d(v)^2}$$

$$= \frac{2m}{3^2} + \frac{nm-2m}{4^2}$$

$$= \frac{2m}{9} + \frac{nm-2m}{16}$$

$$= \frac{32m+(nm-2m)9}{144}$$

$$= \frac{32m+9m-18m}{144}$$

$$= \frac{9nm-14m}{144}$$

Theorem 8:

The Modified first Zagreb index G of a strong product of path p_n and cycle c_m is

$$mM_1(G) = \frac{225nm+350n+720m+596}{14400}$$

Proof:

The Strong Product of path p_n and cycle c_m has 4 vertices of degree 4,(2n-4) vertices of degree 6,
(2m-4) vertices of degree 5 and (nm-2n-2m+4) vertices of degree 8, then the Modified first Zagreb index \(G \) is

\[
M_1^m(G) = \sum_{v \in V(G)} \frac{1}{d(v)^2}
\]

\[
= \frac{4}{2^2} + \frac{2n-4}{4^2} + \frac{2m-4}{4^2} + \frac{(nm-2n-2m+4)}{8^2}
\]

\[
= \frac{4}{16} + \frac{2n-4}{36} + \frac{2m-4}{25} + \frac{(nm-2n-2m+4)}{64}
\]

\[
= \frac{4(900)+(2n-4)400+(2m-4)576+(nm-2n-2m+4)225}{14400}
\]

\[
= \frac{3600+800n-1600+1152m-2304+225nm-450n+450m+900}{14400}
\]

\[
= \frac{225nm+350n+702m+596}{14400}
\]

Theorem 9:

The Modified first Zagreb index \(G \) of a Tensor product of path \(p_n \) and cycle \(c_m \) is

\[
M_1^m(G) = \frac{nm+6n+6m+36}{16}
\]

Proof:

The Tensor product of path \(p_n \) and cycle \(c_m \) has 4 vertices of degree 1, 2n-4 vertices of degree 2, 2m-4 vertices of degree 2 and (nm-2n-2m+4) vertices of degree 4, then the Modified first Zagreb index \(G \) is

\[
M_1^m(G) = \sum_{v \in V(G)} \frac{1}{d(v)^2}
\]

\[
= \frac{4}{1^2} + \frac{2n-4}{2^2} + \frac{2m-4}{2^2} + \frac{(nm-2n-2m+4)}{4^2}
\]

\[
= \frac{4}{4} + \frac{2n-4}{4} + \frac{2m-4}{4} + \frac{(nm-2n-2m+4)}{16}
\]

\[
= \frac{64+(2n-4)4+(2m-4)4+(nm-2n-2m+4)}{16}
\]

\[
= \frac{64+8n-16+8m-16+nm-2n-2m+4}{16}
\]

\[
= \frac{nm+6n+6m+36}{16}
\]

3 **CONCLUSION**

In this paper, modified first Zagreb index of product of graphs are obtained. This index can be used as a numerical description in comparison with chemical, physical and biological parameters to study about its relationships.

REFERENCES
