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ABSTRACT:  

Linear regression analysis is a statistical phenomenon in order to evaluate the association 

between the variables. Multiple linear regression models are the one in which there is one 

dependent variable and more than one independent variables. Regression analysis is an 

important tool to identify and characterize the relationshipsof multiple factors. The goal of 

this article is to introduce some methods and applications of linear regression models. The 

central concepts in linear regression analysis namely estimation theory, maximum likelihood, 

and linear hypothesis are comprehensively discussed. Moreover an innovative proof of Gauss 

–Markov theorem in full rank case has been proposed here. 
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Introduction: 

In 1894, Sir Francis Galton introduced the concept of linear regression. Linear regression 

analysis is a statistical tool applied to the given set of data. In order to trace the quantifying 

relationship between variables. In 2018, khushbukumari et al. , in their article explained the 

fundamental properties of linear regression and the methods of performing its calculations in 

SPSS and excel. Gulden kaya Uyanik et al. in 2013, in their paper,examined the assumptions 

of multi linear regression analysis –normality,linearity, no extreme values and missing value 

analysis. RoddyTheobold, in 2017, in their research paper,described an effective frame work 

of multiple linear regression models. FatemahJalayer et al, in 2015, in their research 

article,explained Bayesian cloud analysis using linear regression. Gibbs Y. Kanyongo, in 

2006, in their research article,applied linear regression analysis in framing the association 

between home and reading environments. 
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The specific form of linear hypothesis is described by  

  ll yyz .....11     (1) 

Here lyy ,......1  are given vectors of constants 

 follows  mm IN 2,0   

The unknown parameters are l ....1 .  

(1) is also known as multiple regression model. 

This model includes a large number regression models namely analysis of covariance, one-

way analysis of variance , two –way analysis of variance, higher order analysis of variance, 

simple linear regression. lyyz ,..., 1 usually take their values on the inner product space mR . An 

lm  matrix  lyyy ,....1  and the column vector  Tl ,....1  change (1) as   yz . 

For instance  

i) For the ordered pairs  jj zy , ; j=1,2,…m 

If we assume jjj yz    then it takes  

the vector form   yz  and it is known as regression through origin. If y is 

vector of all ones and  as  then zi follows normal distribution with mean   

and variance 2 . 

ii) Let zjk= yield of wheat under condition i on jth plot 

yjk= Fertility of plot k for condition j 

k=1,….mj ,  j=1,2 

 = Set of vectors
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z  

y corresponding vector of yjk’s 

Indicator of first column= 1u  

Indicator of second column= 2u  

Then the model   yuuz 32211 is to used. 

iii) If the pairs   mjzy jj ...2,1,,   are observed  then the model  is 

jjjjj yyyz   3

3

2

210  
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n ,...., 21 are independent with the distribution  2,0 N  

Renaming 1 by uoj,,yj by u1j, y
2

j  by u2j  and y3
j  by u3j  the above becomes  

kj

k

ki uz 



3

0

  

In vectors it is denoted by 



3

0k

kkuz   

2. Estimation Theory: 

The linear hypothesis can be put as  

 z and described by the following Fig. 
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In some cases it sufficesto compute  and its representation as 


l

k

kk y
1

 is not that 

much important. But the regression coefficients l ,....1  have much importance. Hence 

matrix notation is implemented. Each and every vector is treated as a column. Put 

 lyyy ,...1  and call by design matrix. Now  y . If lyy ,.....1  are LI then one can have 

  


nyyy TT 1
 

The least squares phenomenon estimates   and let 

It  be̂  which minimizes )(
2  Wz   

Here V  and   z
v
zP ̂  

If y  has full column rank then  

  zyyyy TT 1
ˆ


  
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  zyyy TT 1
ˆ


  

Consequently     


yyyy TT 1
ˆ  

     TT yyy
1

  

Here   TT yyy
1

is the Moore-Penrose inverse 
y  of y  and it is called  the 

coefficient matrix. 

If the column vector of y  are orthogonal then  

 




 kk

k

y
y
zpz ̂  

Where   2
/,ˆ

kkk yyz  

  =   2
/, kkk yy   

  Moreover        


EyyyE TT 1ˆ  

    TT yyyDD
1

)ˆ(


  

  =       TTT

m

TT
yyyIyyy

21



 

  =   21



yyT  

 ̂ Follows a multivariate normal distribution. 

3. Maximum Likelihood: 

The likelihood function is  

   
222 5.02 2,,

  zmezL

m

 

For each observed zz  and  lyyLV ,....1  

2 is always +ve. 

The phenomenon of maximum likelihood gives the estimates of the pair  2,  which 

optimises L for each zz  . In other words it optimizes  

22
ˆ)5.0(log2)5.0(2log)5.0(log   zmmL
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By choosing
 ˆ






V

p
, log L is optimized for each fixed 

2
.
 

Moreover for this choice of   one can see 

22
ˆ)5.0(log2)5.0(2log)5.0(log   zmmL  

Replacing 2  by u and choosing the differential coefficients of u, one can obtain 

    221 ˆ5.0)5.0(log   uzumL
du

d
  

This becomes 0 for 122 ˆˆ  mzu   

It can be easily seen that second derivative is –ve. 

Hence 122ˆ  mz   optimizes log Lfor each̂ . Consequently the pair  2ˆ,ˆ  optimizes L 

.This pair is the MLE of  2, . 

4. Estimation of 2  

MLE of 2  is 122 ˆˆ  mz   

   
 Vmm

VmE
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dimˆ
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



 

2̂ is a biased estimates of 2  

Hence the commonly used estimates of 2  is  

  122 dimˆ
 VmzR   

If   has a MND then 2

dim

22
~ˆ

Vmz 
 

. 

As the central 
2  distribution with n degrees of freedom has a variance 2n, one can obtain  

  
  14

242

dim2

dimdim2)(









Vm

VmVmRVar




 

5. Properties of ̂  and 2R  

By facts that     VzPz
V
zP |ˆ,ˆ   
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V and V  are orthogonal spaces, one can see that ̂  and ̂z  are uncorrelated random 

vectors, which are independent under normality. 

Hence  ̂  and   122 dimˆ
 VmzR  are  independent in the case that the columns of y  

are a basis for V. 

If z is a multivariate normal random variable     zyyyyyy TTTT 11
ˆˆ


  and the residual 

vector ̂ ze  are uncorrelated independent random vectors. 

In order to summerize all the results under the model  ˆˆ z  for  mm INV 2,0~,ˆ    

One can obtain the following 

i)  2,~ˆ  vm PN  

ii)   2,0~ˆ  Vmm PINze   

iii) ̂  and ̂z  are independent random vectors 

iv) 2

dim

22
~ˆ

Vmz    

v) Hence    122 dimˆ
 VmzR   is an unbiased estimator of 

2  

vi) If the columns of y  serve as a basis of V and  y  then   zyyy TT 1
  and 

R2 are independent provided    21
,ˆ 


 yyN

T

l .Besides the columns of y  

are mutual orthogonal the estimators ̂  are not correlated and hence they become 

independent. 

6. Confidence intervals and Tests on llaa   ......11  

One is generally interested in a linear combination   llaaa   ......, 11 .̂ is an 

unbiased estimator of   by the linearity of expectation. Its variance is given by  

 
2

211ˆ





d

aNaVar



 

 

Here N  is the inner product matrix. 

The corresponding estimator of  ̂Var  is 
22

dSS   

Particularly when k   , a is the  kth unit vector and d is the kk term of N-1. 
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Hence 

 
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Therefore for  1,lmtt  ,

  22
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dstdstP
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

 

Hence  2

1,
ˆ dst lm    is a  %1100   confidence interval on  . 

7. Tests of hypothesis on  kka   

Let one want to test 00 :  H  versus 01 :  H  

Here 0  is a known constant, generally it is 0. 

Since 








 
 

2

0

2

0
ˆ

~
ˆ





d
t

dS
t lm  

And this becomes central t where 0  . 

The tests which reject H0 for 





 1,

2

0
ˆ

lmt
dS

t is an  - level test. The two sided hypothesis 

00 :  H  versus 01 :  H is rejected for  5.01,  lmtt  

8. The Gauss-Markov theorem :( Full rank case) 

Suppose 



l

k

kk yz
1

 where y1….yl are L.I. 

here     nIDE 2,0   . 

Let  kka  and 
* be any linear unbiased estimator of  . 

Then     ˆ* VarVar   with equality only if V  ˆ*  

Proof:    TT yyy
1

  and     ,
1

byyyaa TTTT 


 

Where   .
1
ayyyb T 

  
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Take any linear estimator  zd ,*  of  . Then  

    ,* dE   

* is unbiased for   if     Vbd   ,,  

That is if   0,  bd for all V  

In other wordsif   Vbd   then  

       
 



,ˆ

,ˆ,,,*

bd

bdzbdzbzd




 

As  bdb  , the random variables ̂  and  abd ,  are uncorrelated. Hence one can see 

    2
2

* ˆ  bdVarVar   

Consequently   )ˆ(*  VarVar  withequality only if bd  i.e  ˆ*   for all V. 

9. Conclusions and Future Research: 

The above talk mainly explores on most important concepts of linear regression analysis 

namely estimation theory, maximum likelihood, specific form of linear hypothesis ,testing of 

hypothesis and an innovative proof of Gauss-Markov theorem for full rank case. In the 

context of future research one can extend these ideas to Gauss-Markov theorem for the 

general case, interpretation of regression coefficients, multiple correlation coefficient and 

partial correlation coefficient. 
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