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Abstract 

At different milestones in the software evolution process, software quality evaluation is a trivial 

task. This can be used to schedule performance assessment, quality management and project 

enhancement operations. Two techniques Linear Programming with Multiple Parameters (LPMP) 

and Quadratic Programming with Multiple Parameters (QPMP) for assessing the quality of 

software had been employed in the ongoing studies and researches. Several experts conducted 

research with Support Vector Machine (SVM), Neutral network (NN), C5.0 for quality 

assessment. These experiments had given poor and low results. In this research, by utilizing 

corresponding attributes of a multiple datasets, we fine-tuned prediction efficiency. In addition to 

employing a method of selecting a subgroup of relevant variables and variance matrix for getting 

greater and better results, we have applied different tests on latest approaches and accomplished 

good results for other predictive activities. Machine learning (ML) algorithms such as Logistic 

regression (LR), AdaBoost (AB), Random Decision Forest (RDF), Bagging Classifier (BC) and 

Classification Tree (CT) are executed on the data to forecast the software functionality, reliability 

and disclosed the association between the parameters of quality and production. The 

investigational outcomes proved that the measure of software quality can be well determined and 

assessed by ML techniques. 
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Introduction 

Machine learning techniques help us to investigate, generalize and predict large datasets. Machine learning is 

related closely to statistics and decision-making. Machine learning techniques are used for various purposes, 

such as weather forecasting, estimating the sales of a product, calculating the probability of a team winning in 

a match etc. 

Many tech vendors need to develop and distribute quality software products in the specified time-

frame and cost. However, forecasting the quality of early-stage applications would greatly help 

programmers in the management and quality assurance of applications, and would make the distribution 

of effort and resources more effective. Defects may arise in any stage of software evolution process 

starting form requirements analysis to deployment phase. So there is a need to perform assessment after 

completion of every milestone. The factors that measure the quality levels of software are number of 

defects per unit, security vulnerabilities, software process model, size of software etc. Among all the 

factors, number of defects per unit is considered as most important factor. 

There are some non-functional qualities or characteristics to the standard of applications, such as 

durability, maintenance, accessibility, consistency and productivity. Even if many considerations 

remain, it is primarily the reliability and maintainability of the calculation of the output of a program 

in operation. With a lower error or loss frequency, high quality applications should be accurate. 

II RELATED WORKS 

Ceran, A. A et al., (2020). [1] employed covariance matrix and feature selection method for 

predicting the software functionality. 

Design flaws in the software affect the maintainability of the software. Thongkum, Pet al., (2020). 

[2] Employed Extreme Learning Machine (ELM) to predict design flaws of the software. They assessed 

20 application packages, compared ML models and found out that one particular model outperformed all 

other models. 

Based on number of defects in the software, two studies were introduced in the past for predicting 

the functionality of software. Both these studies used International Software Benchmarking Standard 

Group (ISBGS) dataset. ISBGS-10 data set released in January 2007 contains 106 attributes and 4,017 

records.  
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Methods such as LPMP and QPMP were executed on ISBGS dataset in the first study [3] and finally 

the prediction accuracies were analyzed. The performance of LPMP and QPMP on the ISBSG-10 

database is measured   by employing k-fold cross validation technique. 11 features and 374 records were 

left in the ISBGS dataset after preprocessing. High and low are the two parameters used to indicate 

software quality level.  

Software quality level is determined using the formula given in Equation 1.  

          SQ = mn+2*mj+4*et                     (Eq.1) 

Where SQ denotes Software Quality, mn denotes number of minor defects, mj denotes number of 

major defects and et denotes number of extreme defects.  

In the second study [4], the software is classified as high or low by employing NN, SVM, and C5.0 

classifiers. If the number of minor defects is not more than 10, extreme defects don’t exist, and number 

of major defects is not more than 1, then the quality level of software is assumed as high class. The 

remaining cases are assumed as low class. 53 features and 746 projects were left in the ISBGS dataset 

after preprocessing.  

To predict the software quality, Rashid et al. [5] employed experience based ML approach where the 

solutions to the prediction problems are solved using stored cases or past experiences. The parameters 

used for predicting the quality of the software are software evolution type, functional points count, 

degree of complexity, Lines Of Code (LOC), software developer skills and experience. Euclidian 

distance (ED) or The Manhattan distance (MD) is used to measure the deviation. The results were 

captured in the storage system when the estimated error is not more than 10%. The numbers of inputs 

which are received from the user are restricted to particular value. In order to predict accurate values, the 

values in the database must be close to each other. 

Reddivari, S et al., (2019). [6] Conducted observations using 8 ML models to predict reliability 

and maintainability of software, and concluded that Random Forest classifier is the best performer than 

others with an Area under Curve (AUC) of more than 0.8.  

Rana, R et al., (2015). [7] Proposed a systematic architecture adapted from ISO/IEC 15939 information 

model for the use of large scale software businesses of ML techniques for measurement and estimation 

of software quality. 

Chandra, K et al., (2016). [8] Developed a prediction model to improve the quality of software by 

considering software versions’ data points. 

Prabha, C. L et al., (2020). [9] Used hybrid feature reduction scheme along with artificial neural 

networks to predict software defects. 

Nalini, C et al., (2020). [10] Used code profiles and genetic neuro evolution algorithm to predict 

software defects. 

Gu, Z., Wang, Jet al., (2020). [11] Suggested a consistency model for machine learning 

constructing energy systems that could be used in the quality improvement of production of the system. 

Malhotra, R et al., (2020). [12] The research study examined academic papers conducted between 

January 1990 and January 2019, in which deep learning was used to test the estimation metrics for 

software efficiency. In this paper 20 different studies and 7 deep learning domain groups are listed in the 

software quality prediction metrics. 

Immaculate, S. D, et al., (2019). [13] utilized three supervised machine learning algorithms to 

design and forecast the creation and usage of historical data based software glitches by classification 

regression, probabilistic classification, i.e. Naïve Bayes and classification trees. 

P. Singh  (2019). [14] performed detailed studies in order to analyse and engage with varied 

incarnations of classifiers on ongoing activities, including undersampling, oversampling and mixed 

approaches. Six approaches with six classifiers in 12 datasets are tested. 

Malhotra, R et al., (2020). [15] Done comparisons on nine java based software open-source 

programmes using four usually-used extraction technologies from PROMISE repository. The findings of 

this analysis demonstrate that autoencoders are an efficient way of minimising effectively the 

dimensions of a data collection of programme defects. 

M. Banga et al., (2019). [16] An analysis of software reliability models based on machine 

learning techniques was performed. Once the plenary work on defects caused during fault removal was 

reviewed, they had already suggested a new method, using machine learning methods, which were 

focused on detection of the most important parameters that impact software protection. 
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K. Tanaka et al., (2019). [17] Auto-sklearn has been tested by using software metrics from 20 

free licensed software projects for intra-release defect foreclosure, as well as correlated auto-sklearn with 

various classifiers to forecast the number of flaws in software systems. Results revealed that auto-sklearn 

behaved in a similar way to random decision forest, which in previous studies is one of the better 

prediction models for defect prediction. 

M. W. Thant et al., (2019). [18] Suggested a hybrid approach which is paired with the use of 

Minimal level-Redundancy-Maximum-Correlation (MRMC) function. Five NASA Metrics Data 

Program datasets were studied and test results demonstrated that the hybrid method with 

MRMC provided greater precision than Support Vector Machine. 

Khan, F et al., (2020). [19] Used seven ML models along with artificial immune networks to 

predict defective components of software. The software bug prediction model findings have shown that 

the ML models with optimization of hyper parameters worked well than their default hyper parameters. 

S. Rathaur et al., (2020). [20] Used an ML model i.e multiple linear regression to predict defect 

density in open source software. The predictor variables used are Source Lines of Code (SLOC), 

developers count, commits count and code churn. The rmality test was performed for the predictor 

variables and the correlation matrix was tested between the defect density of the free software and each 

of the predictor variables.  

All the above mentioned studies used binary classification to predict software quality. By employing 

recent classification methods, considering size in terms of function points, we tried to improve 

accuracy levels of prediction models. 

III MATERIALS AND METHODS 

A. DATASETS 

       Evidence-Based Software Portfolio Management (EBSPM) dataset has 492 completed software projects 

from the Netherlands and Belgium, from 4 separate firms. Any of the EPSPM dataset's properties are 

seen in Table I. The recent release of the dataset on 24 Jul 2017 doesn’t contain defect density value. The 

Defect Density value (Dd) was determined using the formula given below and Dd was introduced as a 

feature in both the datasets (EBSPM and ISBSG). 

Dd = defect * 1000 / fs. 

      Where fs denotes functional size. 

       In compliance with the ISBSG Update 11(June 2009), 5052 projects are in action. The ISBSG data set 

has twenty features of primary level and 118 features of secondary level. Any of this data sample's 

features are seen in Table II.  

B. DATA PREPROCESSING 

The training accuracy is improved when the dataset was preprocessed effectively and efficiently. So, 

we removed and deleted rows with missing values and undefined values. The final summary of these 

two datasets were shown in Table III and Table IV. ISBSG Dataset were limited to 11 features and 1 

target class,  EBSPM Dataset has been limited to 10 and one target class following preprocessing. 

Further, as per the defect density values of the project in Table V and VI, we categorized the software 

quality indicator into four groups. 

C. MACHINE LEARNING METHODS 

Logistic regression (LR) 

Method of logistic regression addresses questions of classification. It is designed to predict the 

possibility of a class or class object. Logistic regression approaches an s-formed curve under which the 

binary response variables estimate their characteristics. The translation from the logistic equation to the 

Ordinary Least Square-type equation obtains a dynamic optimized equation in this method. Below is the 

equation (1) resulting from the probabilistic method. P is the chance of Y=1 and 1-P the risk of obtaining 

Y=0. 

            𝑙𝑛 (
𝑃

1−𝑃
) = 𝑐 + 𝑑𝑥                  Eq. (1) 

P from the regression model can also be extracted. The regression function in Equation (2) measures the 

predicted likelihood of X with Y=1 for a given value. 

       𝑃 =
exp⁡(𝑐+𝑑𝑥)

1+exp⁡(𝑐+𝑑𝑥)
⁡= 

𝑒𝑐+𝑑𝑥

1+𝑒𝑐+𝑑𝑥
           Eq. (2) 

 

AdaBoost (AB) 



European Journal of Molecular & Clinical Medicine 

ISSN 2515-8260 Volume 07, Issue10 , 2020 

 

3517 

 

Adaptive boosting has been successful in binary classification and makes the weak learner a 

strong learner by adjusting its weight. 

 

Random Decision Forest (RDF) 

Random Forest is an ensemble classifier which is supposed to be graded and regressed. It builds 

the number of classification trees on multiple data sub-samples and takes a minimum of predictive 

precision and also tests model override. The classification of its performance is based on class mode and 

utilizes average trees for regression. 

Bagging Classifier (BC)  

Bagging classifier is an ensemble meta-estimator that matches each of the base classifiers in 

random subsets of the initial data set and then combines respective individual forecasts to form a final 

forecast (either by voting or an averaging). 

Classification Tree (CT) 

Classification tree is a tree formed in a recursive order where each node represents a 

potential decision with edges that indicate the possible pathway between nodes. Instance 

classification essentially parallels the direction from the tree's root to its leaves. The 

characteristics used for decision- making are selectively chosen to ensure a high degree of 

information gain. 

Table I. Features of EBSPM Data 

Project_ID Organization Short_Project_Description Year_technical_go_live 

323 3 
Maintenance and enhancements 

project on an existing…… 
2012 

480 3 

Maintenance project on an 

existing Mobile 

application… 

2016 

482 3 
Enhancements project on an 

existing CRM application… 
2016 

474 3 

Enhancements project on an 

existing Internet 

application… 

2016 

297 1 
Maintenance and new 

functionality release on …. 
2012 

Table II. Features of ISBSG Data 

Project_ID 
DataQualityRati

ng 
UFPRating YearofProject CountApproach 

10001 4 A 1998 5 

10075 1 B 1994 3 

10136 2 B 2004 3 

10143 1 A 1998 3 

10163 1 A 1994 4 

TABLE III. ISBSG DATASET 

Step Attribute Filter Excluded Projects Residual Projects 

1 Defect Density Null 4292 760 

2 FP Standard Other/Null/Not given 15 745 

TABLE IV. EBSPM DATASET 

Step Attribute Filter Excluded Projects Residual Projects 

1 Defect Process Null 222 270 

TABLE V. EBSPM QUALITY LEVELS 

Quality 

Level 

Defect 

Density 

Excluded 

Projects 

1 0-80 56 
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2 80-160 74 

3 160-320 54 

4 320-4875 86 

Quality 

Level 

Defect 

Density 

Excluded 

Projects 

1 0 273 

2 0,5-20 246 

3 20-80 173 

4 80-4237 52 

TABLE VI. ISBSG QUALITY LEVELS 

IV IMPLEMENTATION 

After pre-processing the excel files have been interpreted and the particulars have been 

forwarded to a vector using Python function. There have been two parameters generated and one 

parameter has been given the objective attribute (Quality level) and another parameter was applied to 

other selected properties. 

Next, the matrix of correlation is accomplished. Both data sets were shown to have an 

exceptionally high association with software consistency with the number of defects. The timeframe and 

cost of production of the software are likely to influence its consistency. 

Secondly, the table of function significance indicates the target class's comparison to other 

classes. The most influential feature of the data collection is the number of errors, one of the variables 

used to determine consistency. 

For implementation of the models, we used the Python scikit-learn library. The preparation and 

test details were split by a 33-percent ratio of 67 percent. Figure 1 indicates that a defect mechanism is 

highly significant in the EBSPM dataset, but its functionality affects software quality almost equally.  

Cost and time both play a major role in estimating consistency. Figure 2 indicates, on the other 

hand, that in the ISBGS dataset defect quantity is again the most important characteristic. The remaining 

features are about the same and do not matter as many faults. 

 

Software was graded as high-quality or low-quality in the previous immediately comparable 

two reports. This can lead, particularly when at frontiers, to wrong results. That's why the 

standard was split into four grades. Since we have four class 

types, prediction algorithms need to be used in multi-class predictions. 

 
Fig. 1. Selected Attributes and their importance in EBSPM Dataset 
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Fig. 2. Selected Attributes and their importance in ISBSG Dataset 

V RESULTS AND DISCUSSION 

The scikit-learn library algorithms were useful for our purposes, particularly in 

several class prediction problems. The findings of previous studies are shown in Table VII. 

Table VIII and Table IX display the top five accuracies of the methods utilized. There were 

variations in precision between the interdependent coefficients in two datasets. Often, an essential 

element impacting precision is the gap in the variety of projects between two datasets. 

We also evaluated classification techniques on two datasets using Scikit-learn library. Latest 

algorithms that stand up for multi-class classification have been researched by us. The exactness of these 

methods in EBSPM data set is 92.28% and in ISBSG data set is 92.22% respectively. Appropriate level 

multiclass consistency estimation may be accomplished relative to previous strictly comparable tests. 

Graph showing results of current work is given in figure 3. 

Table VII: Results of previous study methods 

Technique Accuracy 

LPMP 61.70% 

QPMP 66.90% 

SVM 69.17% 

NN 70.43% 

C5.0 77.88% 

 

Table VIII: Current work results on ISBSG DATASET 

Technique Accuracy 

LR 69.92% 

CT 89.43% 

RDF 89.43% 

AB 92.28% 

BC 92.28% 

 

Table IX: Current work results on EBSPM DATASET 

Technique Accuracy 

AB 65.56% 

RDF 66.67% 

BC 67.78% 
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Figure 3: Graph showing results of current work 
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