
European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue10 , 2020

3514

A Comparative Analysis and Prognosis of Software Functionality with Machine

Learning Techniques

Dr Y Narasimha Rao
Professor and HOD, Department of Computer Science and Engineering, QIS College of Engineering and Technology,

Ongole.
Abstract

At different milestones in the software evolution process, software quality evaluation is a trivial

task. This can be used to schedule performance assessment, quality management and project

enhancement operations. Two techniques Linear Programming with Multiple Parameters (LPMP)

and Quadratic Programming with Multiple Parameters (QPMP) for assessing the quality of

software had been employed in the ongoing studies and researches. Several experts conducted

research with Support Vector Machine (SVM), Neutral network (NN), C5.0 for quality

assessment. These experiments had given poor and low results. In this research, by utilizing

corresponding attributes of a multiple datasets, we fine-tuned prediction efficiency. In addition to

employing a method of selecting a subgroup of relevant variables and variance matrix for getting

greater and better results, we have applied different tests on latest approaches and accomplished

good results for other predictive activities. Machine learning (ML) algorithms such as Logistic

regression (LR), AdaBoost (AB), Random Decision Forest (RDF), Bagging Classifier (BC) and

Classification Tree (CT) are executed on the data to forecast the software functionality, reliability

and disclosed the association between the parameters of quality and production. The

investigational outcomes proved that the measure of software quality can be well determined and

assessed by ML techniques.

Keywords—Software Reliability, Tree Boosting, AdaBoost, Machine Learning, Software Functionality.

Introduction

Machine learning techniques help us to investigate, generalize and predict large datasets. Machine learning is

related closely to statistics and decision-making. Machine learning techniques are used for various purposes,

such as weather forecasting, estimating the sales of a product, calculating the probability of a team winning in

a match etc.

Many tech vendors need to develop and distribute quality software products in the specified time-

frame and cost. However, forecasting the quality of early-stage applications would greatly help

programmers in the management and quality assurance of applications, and would make the distribution

of effort and resources more effective. Defects may arise in any stage of software evolution process

starting form requirements analysis to deployment phase. So there is a need to perform assessment after

completion of every milestone. The factors that measure the quality levels of software are number of

defects per unit, security vulnerabilities, software process model, size of software etc. Among all the

factors, number of defects per unit is considered as most important factor.

There are some non-functional qualities or characteristics to the standard of applications, such as

durability, maintenance, accessibility, consistency and productivity. Even if many considerations

remain, it is primarily the reliability and maintainability of the calculation of the output of a program

in operation. With a lower error or loss frequency, high quality applications should be accurate.

II RELATED WORKS

Ceran, A. A et al., (2020). [1] employed covariance matrix and feature selection method for

predicting the software functionality.

Design flaws in the software affect the maintainability of the software. Thongkum, Pet al., (2020).

[2] Employed Extreme Learning Machine (ELM) to predict design flaws of the software. They assessed

20 application packages, compared ML models and found out that one particular model outperformed all

other models.

Based on number of defects in the software, two studies were introduced in the past for predicting

the functionality of software. Both these studies used International Software Benchmarking Standard

Group (ISBGS) dataset. ISBGS-10 data set released in January 2007 contains 106 attributes and 4,017

records.

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue10 , 2020

3515

Methods such as LPMP and QPMP were executed on ISBGS dataset in the first study [3] and finally

the prediction accuracies were analyzed. The performance of LPMP and QPMP on the ISBSG-10

database is measured by employing k-fold cross validation technique. 11 features and 374 records were

left in the ISBGS dataset after preprocessing. High and low are the two parameters used to indicate

software quality level.

Software quality level is determined using the formula given in Equation 1.

 SQ = mn+2*mj+4*et (Eq.1)

Where SQ denotes Software Quality, mn denotes number of minor defects, mj denotes number of

major defects and et denotes number of extreme defects.

In the second study [4], the software is classified as high or low by employing NN, SVM, and C5.0

classifiers. If the number of minor defects is not more than 10, extreme defects don’t exist, and number

of major defects is not more than 1, then the quality level of software is assumed as high class. The

remaining cases are assumed as low class. 53 features and 746 projects were left in the ISBGS dataset

after preprocessing.

To predict the software quality, Rashid et al. [5] employed experience based ML approach where the

solutions to the prediction problems are solved using stored cases or past experiences. The parameters

used for predicting the quality of the software are software evolution type, functional points count,

degree of complexity, Lines Of Code (LOC), software developer skills and experience. Euclidian

distance (ED) or The Manhattan distance (MD) is used to measure the deviation. The results were

captured in the storage system when the estimated error is not more than 10%. The numbers of inputs

which are received from the user are restricted to particular value. In order to predict accurate values, the

values in the database must be close to each other.

Reddivari, S et al., (2019). [6] Conducted observations using 8 ML models to predict reliability

and maintainability of software, and concluded that Random Forest classifier is the best performer than

others with an Area under Curve (AUC) of more than 0.8.

Rana, R et al., (2015). [7] Proposed a systematic architecture adapted from ISO/IEC 15939 information

model for the use of large scale software businesses of ML techniques for measurement and estimation

of software quality.

Chandra, K et al., (2016). [8] Developed a prediction model to improve the quality of software by

considering software versions’ data points.

Prabha, C. L et al., (2020). [9] Used hybrid feature reduction scheme along with artificial neural

networks to predict software defects.

Nalini, C et al., (2020). [10] Used code profiles and genetic neuro evolution algorithm to predict

software defects.

Gu, Z., Wang, Jet al., (2020). [11] Suggested a consistency model for machine learning

constructing energy systems that could be used in the quality improvement of production of the system.

Malhotra, R et al., (2020). [12] The research study examined academic papers conducted between

January 1990 and January 2019, in which deep learning was used to test the estimation metrics for

software efficiency. In this paper 20 different studies and 7 deep learning domain groups are listed in the

software quality prediction metrics.

Immaculate, S. D, et al., (2019). [13] utilized three supervised machine learning algorithms to

design and forecast the creation and usage of historical data based software glitches by classification

regression, probabilistic classification, i.e. Naïve Bayes and classification trees.

P. Singh (2019). [14] performed detailed studies in order to analyse and engage with varied

incarnations of classifiers on ongoing activities, including undersampling, oversampling and mixed

approaches. Six approaches with six classifiers in 12 datasets are tested.

Malhotra, R et al., (2020). [15] Done comparisons on nine java based software open-source

programmes using four usually-used extraction technologies from PROMISE repository. The findings of

this analysis demonstrate that autoencoders are an efficient way of minimising effectively the

dimensions of a data collection of programme defects.

M. Banga et al., (2019). [16] An analysis of software reliability models based on machine

learning techniques was performed. Once the plenary work on defects caused during fault removal was

reviewed, they had already suggested a new method, using machine learning methods, which were

focused on detection of the most important parameters that impact software protection.

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue10 , 2020

3516

K. Tanaka et al., (2019). [17] Auto-sklearn has been tested by using software metrics from 20

free licensed software projects for intra-release defect foreclosure, as well as correlated auto-sklearn with

various classifiers to forecast the number of flaws in software systems. Results revealed that auto-sklearn

behaved in a similar way to random decision forest, which in previous studies is one of the better

prediction models for defect prediction.

M. W. Thant et al., (2019). [18] Suggested a hybrid approach which is paired with the use of

Minimal level-Redundancy-Maximum-Correlation (MRMC) function. Five NASA Metrics Data

Program datasets were studied and test results demonstrated that the hybrid method with

MRMC provided greater precision than Support Vector Machine.

Khan, F et al., (2020). [19] Used seven ML models along with artificial immune networks to

predict defective components of software. The software bug prediction model findings have shown that

the ML models with optimization of hyper parameters worked well than their default hyper parameters.

S. Rathaur et al., (2020). [20] Used an ML model i.e multiple linear regression to predict defect

density in open source software. The predictor variables used are Source Lines of Code (SLOC),

developers count, commits count and code churn. The rmality test was performed for the predictor

variables and the correlation matrix was tested between the defect density of the free software and each

of the predictor variables.

All the above mentioned studies used binary classification to predict software quality. By employing

recent classification methods, considering size in terms of function points, we tried to improve

accuracy levels of prediction models.

III MATERIALS AND METHODS

A. DATASETS

 Evidence-Based Software Portfolio Management (EBSPM) dataset has 492 completed software projects

from the Netherlands and Belgium, from 4 separate firms. Any of the EPSPM dataset's properties are

seen in Table I. The recent release of the dataset on 24 Jul 2017 doesn’t contain defect density value. The

Defect Density value (Dd) was determined using the formula given below and Dd was introduced as a

feature in both the datasets (EBSPM and ISBSG).

Dd = defect * 1000 / fs.

 Where fs denotes functional size.

 In compliance with the ISBSG Update 11(June 2009), 5052 projects are in action. The ISBSG data set

has twenty features of primary level and 118 features of secondary level. Any of this data sample's

features are seen in Table II.

B. DATA PREPROCESSING

The training accuracy is improved when the dataset was preprocessed effectively and efficiently. So,

we removed and deleted rows with missing values and undefined values. The final summary of these

two datasets were shown in Table III and Table IV. ISBSG Dataset were limited to 11 features and 1

target class, EBSPM Dataset has been limited to 10 and one target class following preprocessing.

Further, as per the defect density values of the project in Table V and VI, we categorized the software

quality indicator into four groups.

C. MACHINE LEARNING METHODS

Logistic regression (LR)

Method of logistic regression addresses questions of classification. It is designed to predict the

possibility of a class or class object. Logistic regression approaches an s-formed curve under which the

binary response variables estimate their characteristics. The translation from the logistic equation to the

Ordinary Least Square-type equation obtains a dynamic optimized equation in this method. Below is the

equation (1) resulting from the probabilistic method. P is the chance of Y=1 and 1-P the risk of obtaining

Y=0.

 𝑙𝑛 (
𝑃

1−𝑃
) = 𝑐 + 𝑑𝑥 Eq. (1)

P from the regression model can also be extracted. The regression function in Equation (2) measures the

predicted likelihood of X with Y=1 for a given value.

 𝑃 =
exp⁡(𝑐+𝑑𝑥)

1+exp⁡(𝑐+𝑑𝑥)
⁡=

𝑒𝑐+𝑑𝑥

1+𝑒𝑐+𝑑𝑥
 Eq. (2)

AdaBoost (AB)

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue10 , 2020

3517

Adaptive boosting has been successful in binary classification and makes the weak learner a

strong learner by adjusting its weight.

Random Decision Forest (RDF)

Random Forest is an ensemble classifier which is supposed to be graded and regressed. It builds

the number of classification trees on multiple data sub-samples and takes a minimum of predictive

precision and also tests model override. The classification of its performance is based on class mode and

utilizes average trees for regression.

Bagging Classifier (BC)

Bagging classifier is an ensemble meta-estimator that matches each of the base classifiers in

random subsets of the initial data set and then combines respective individual forecasts to form a final

forecast (either by voting or an averaging).

Classification Tree (CT)

Classification tree is a tree formed in a recursive order where each node represents a

potential decision with edges that indicate the possible pathway between nodes. Instance

classification essentially parallels the direction from the tree's root to its leaves. The

characteristics used for decision- making are selectively chosen to ensure a high degree of

information gain.

Table I. Features of EBSPM Data

Project_ID Organization Short_Project_Description Year_technical_go_live

323 3
Maintenance and enhancements

project on an existing……
2012

480 3

Maintenance project on an

existing Mobile

application…

2016

482 3
Enhancements project on an

existing CRM application…
2016

474 3

Enhancements project on an

existing Internet

application…

2016

297 1
Maintenance and new

functionality release on ….
2012

Table II. Features of ISBSG Data

Project_ID
DataQualityRati

ng
UFPRating YearofProject CountApproach

10001 4 A 1998 5

10075 1 B 1994 3

10136 2 B 2004 3

10143 1 A 1998 3

10163 1 A 1994 4

TABLE III. ISBSG DATASET

Step Attribute Filter Excluded Projects Residual Projects

1 Defect Density Null 4292 760

2 FP Standard Other/Null/Not given 15 745

TABLE IV. EBSPM DATASET

Step Attribute Filter Excluded Projects Residual Projects

1 Defect Process Null 222 270

TABLE V. EBSPM QUALITY LEVELS

Quality

Level

Defect

Density

Excluded

Projects

1 0-80 56

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue10 , 2020

3518

2 80-160 74

3 160-320 54

4 320-4875 86

Quality

Level

Defect

Density

Excluded

Projects

1 0 273

2 0,5-20 246

3 20-80 173

4 80-4237 52

TABLE VI. ISBSG QUALITY LEVELS

IV IMPLEMENTATION

After pre-processing the excel files have been interpreted and the particulars have been

forwarded to a vector using Python function. There have been two parameters generated and one

parameter has been given the objective attribute (Quality level) and another parameter was applied to

other selected properties.

Next, the matrix of correlation is accomplished. Both data sets were shown to have an

exceptionally high association with software consistency with the number of defects. The timeframe and

cost of production of the software are likely to influence its consistency.

Secondly, the table of function significance indicates the target class's comparison to other

classes. The most influential feature of the data collection is the number of errors, one of the variables

used to determine consistency.

For implementation of the models, we used the Python scikit-learn library. The preparation and

test details were split by a 33-percent ratio of 67 percent. Figure 1 indicates that a defect mechanism is

highly significant in the EBSPM dataset, but its functionality affects software quality almost equally.

Cost and time both play a major role in estimating consistency. Figure 2 indicates, on the other

hand, that in the ISBGS dataset defect quantity is again the most important characteristic. The remaining

features are about the same and do not matter as many faults.

Software was graded as high-quality or low-quality in the previous immediately comparable

two reports. This can lead, particularly when at frontiers, to wrong results. That's why the

standard was split into four grades. Since we have four class

types, prediction algorithms need to be used in multi-class predictions.

Fig. 1. Selected Attributes and their importance in EBSPM Dataset

0 0.05 0.1 0.15 0.2 0.25

Organization_profile

Development_method

Organization

Year_technical_go_live

Development_class

Business-domain

Actual_duration_mon…

Actual_cost_EUR

Functional_size_FP

Defects_process

EBSPM Dataset Features

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue10 , 2020

3519

Fig. 2. Selected Attributes and their importance in ISBSG Dataset

V RESULTS AND DISCUSSION

The scikit-learn library algorithms were useful for our purposes, particularly in

several class prediction problems. The findings of previous studies are shown in Table VII.

Table VIII and Table IX display the top five accuracies of the methods utilized. There were

variations in precision between the interdependent coefficients in two datasets. Often, an essential

element impacting precision is the gap in the variety of projects between two datasets.

We also evaluated classification techniques on two datasets using Scikit-learn library. Latest

algorithms that stand up for multi-class classification have been researched by us. The exactness of these

methods in EBSPM data set is 92.28% and in ISBSG data set is 92.22% respectively. Appropriate level

multiclass consistency estimation may be accomplished relative to previous strictly comparable tests.

Graph showing results of current work is given in figure 3.

Table VII: Results of previous study methods

Technique Accuracy

LPMP 61.70%

QPMP 66.90%

SVM 69.17%

NN 70.43%

C5.0 77.88%

Table VIII: Current work results on ISBSG DATASET

Technique Accuracy

LR 69.92%

CT 89.43%

RDF 89.43%

AB 92.28%

BC 92.28%

Table IX: Current work results on EBSPM DATASET

Technique Accuracy

AB 65.56%

RDF 66.67%

BC 67.78%

0 0.1 0.2 0.3 0.4

Resource_level

Development_type

DataQualityRating

FPStandard

Pre2002PDR(afp)

SummaryWorkEffort

YearofProject

Adjustedfunctionpoints

Fnctionalsize

Totaldefectsdelivered

ISBSG Dataset Features

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue10 , 2020

3520

Figure 3: Graph showing results of current work

REFERENCES

[1] Ceran, A. A., & Tanriöver, Ö. Ö. (2020, June). An experimental study for software quality prediction

with machine learning methods. In 2020 International Congress on Human-Computer Interaction,

Optimization and Robotic Applications (HORA) (pp. 1-4). IEEE.

[2] Thongkum, P., & Mekruksavanich, S. (2020, March). Design Flaws Prediction for Impact on

Software Maintainability using Extreme Learning Machine. In 2020 Joint International Conference

on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical,

Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON) (pp. 79-82).

IEEE.

[3] X. Wang, Y. Zhang, L. Zhang and Y. Shi, "A Knowledge Discovery Case Study of Software Quality

Prediction: ISBSG Database," 2010 IEEE/WIC/ACM International Conference on Web Intelligence

and Intelligent Agent Technology, Toronto, ON, 2010, pp. 219-222.

[4] X. Wang, Y. Zhang, L. Zhang and Y. Shi, "A Knowledge Discovery Case Study of Software Quality

Prediction Based on Classification Models: ISBSG Database," The 11th International Symposium on

Knowledge Systems Sciences (KSS 2010), 2010.

[5] E. Rashid, S. Patnaik, and V. Bhattacherjee, "Software quality estimation using machine learning:

Case-Based reasoning technique, " International Journal of Computer Applications, 2012.

[6] Reddivari, S., & Raman, J. (2019, July). Software Quality Prediction: An Investigation Based on

Machine Learning. In 2019 IEEE 20th International Conference on Information Reuse and

Integration for Data Science (IRI) (pp. 115-122). IEEE.

[7] Rana, R., & Staron, M. (2015, September). Machine learning approach for quality assessment and

prediction in large software organizations. In 2015 6th IEEE International Conference on Software

Engineering and Service Science (ICSESS) (pp. 1098-1101). IEEE.

[8] Chandra, K., Kapoor, G., Kohli, R., & Gupta, A. (2016, February). Improving software quality using

machine learning. In 2016 International Conference on Innovation and Challenges in Cyber Security

(ICICCS-INBUSH) (pp. 115-118). IEEE.

[9] Prabha, C. L., & Shivakumar, N. (2020, June). Software Defect Prediction Using Machine

Learning Techniques. In 2020

4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184) (pp. 728-733).

IEEE.

69.92%

89.43%

89.43%

92.28%

92.28%

92.22%

67.78%

66.67%

65.56%

67.78%

0.00% 50.00% 100.00%

LR

CT

RDF

AB

BC

Accuracy

EBSPM ISBSG

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue10 , 2020

3521

[10] Nalini, C., & Krishna, T. M. (2020, July). An Efficient Software Defect Prediction Model Using

Neuro Evalution Algorithm based on Genetic Algorithm. In 2020 Second International Conference

on Inventive Research in Computing Applications (ICIRCA) (pp. 135-138). IEEE.

[11] Gu, Z., Wang, J., & Luo, S. (2020, April). Investigation on the quality assurance procedure and

evaluation methodology of machine learning building energy model systems. In 2020 International

Conference on Urban Engineering and Management Science (ICUEMS) (pp. 96-99). IEEE.

[12] Malhotra, R., Gupta, S., & Singh, T. (2020, July). A Systematic Review on Application of Deep

Learning Techniques for Software Quality Predictive Modeling. In 2020 International Conference on

Computational Performance Evaluation (ComPE) (pp. 332-337). IEEE.

[13] Immaculate, S. D., Begam, M. F., & Floramary, M. (2019, March). Software bug prediction using

supervised machine learning algorithms. In 2019 International Conference on Data Science and

Communication (IconDSC) (pp. 1-7). IEEE.

[14] P. Singh, "Learning from Software defect datasets," 2019 5th International Conference on Signal

Processing, Computing and Control (ISPCC), Solan, India, 2019, pp. 58-63, doi:

10.1109/ISPCC48220.2019.8988366.

[15] Malhotra, R., & Khan, K. (2020, June). A Study on Software Defect Prediction

 using Feature Extraction Techniques. In 2020 8th International Conference on Reliability, Infocom

Technologies and Optimization (Trends and Future Directions)(ICRITO) (pp. 1139-1144). IEEE.

[16] M. Banga, A. Bansal and A. Singh, "Implementation of Machine Learning Techniques in Software

Reliability: A framework," 2019 International Conference on Automation, Computational and

Technology Management (ICACTM), London, United Kingdom, 2019, pp. 241-245, doi:

10.1109/ICACTM.2019.8776830.

[17] K. Tanaka, A. Monden and Z. Yücel, "Prediction of Software Defects Using Automated Machine

Learning," 2019 20th IEEE/ACIS International Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed Computing (SNPD), Toyama, Japan, 2019, pp.

490-494, doi: 10.1109/SNPD.2019.8935839.

[18] M. W. Thant and N. T. T. Aung, "Software Defect Prediction using Hybrid Approach," 2019

International Conference on Advanced Information Technologies (ICAIT), Yangon, Myanmar, 2019,

pp. 262-267, doi: 10.1109/AITC.2019.8921374.

[19] Khan, F., Kanwal, S., Alamri, S., & Mumtaz, B. (2020). Hyper-Parameter Optimization of

Classifiers, Using an Artificial Immune Network and Its Application to Software Bug

Prediction. IEEE Access, 8, 20954-20964.

[20] S. Rathaur, N. Kamath and U. Ghanekar, "Software Defect Density Prediction based on Multiple

LinearRegression," 2020 Second International Conference on Inventive Research in Computing

Applications (ICIRCA), Coimbatore, India, 2020, pp. 434-439,

doi:10.1109/ICIRCA48905.2020.9183110.

Author Profile

Dr Y Narasimha Rao received his B.Tech degree in Computer Science and Engineering from JNTU

Hyderabad, M.Tech degree in Computer Science and Engineering from Acharya Nagarjuna University,

Ph.D in the specialization of Parallel Computing in Computer Science and Systems Engineering

department from Andhra University in 2004, 2006 and 2015 respectively. He is currently working as

Professor and HOD, QIS College of Engineering and Technology, affiliated to JNTUK. He has

published more than 30 research Papers in reputed journals. His research interests in Machine learning,

Artificial intelligence, IOT, Data Science and Parallel Computing.

European Journal of Molecular & Clinical Medicine

ISSN 2515-8260 Volume 07, Issue10 , 2020

3522

