DATA SECURITY USING RJB32 METHOD

R. Jaichandran¹, Dr. Avinash Sharma^{2**}, Nethaji A³, Nithish Kumar K.N⁴, Guru Vignesh M⁵, and Suhail Jalal⁶

 1,3,4,5,6 Department Of Computer Science And Engineering Aarupadai Veedu Institute Of Technology Vinayaka Mission'S Research Foundation Paiyanoor-603 104, Tamil Nadu, India.

¹rjaichandran@avit.ac.in, ³mukesh.ajay99@gmail.com, ⁴98nitish@gmail.com ⁵guruvigneshvijay@gmail.com, ⁶asifjalal1998@gmail.com

²Professor, CSE Department, M.M. Deemed to be University, Mullana, Haryana, India, 133207 asharma@mmumullana.org

Corresponding Author: **Dr. Avinash Sharma**²**

Abstract. The present world is data world; without this data cannot survive in present stage. This data produced more from social media; this media data is public data; This public data not have good security; so to overcome this issue we apply the Salsa method. This method easily hack the data from the hackers. RBJ32 method has 5 steps. 1. Applying the key and multiply that key; 2. To apply the prime number in the S^2 and T^2 ; 3. To calculate the EA1 and EA2; 4. To swap the EA1 and EA2 in matrix EnA; 5. Apply the column operations. The proposed method provides good security while comparing with Salsa method.

Key words: RJB32, Prime, Salsa, Encryption, Decryption.

1. INTRODUCTION

The present world is data world; without this data cannot survive in present stage. This data produced more from social media; this media data is public data; This public data not have good security; so to overcome this issue we apply the Salsa method. This method easily hack the data from the hackers. The additional rotations XOR for ChaCha is fault attack [1]. This author is used new hash concept for key guessing and halting condition [2]. Author was introduced the bricklayer attack for analysis of ChaCha [3]. They mainly focus the security for Double A [4]. They made new design for secure fast and flexible algorithm [5]. SRB18 method used to provide security for data [6]. SRB21 method used to provide security for data [7]. CBB21 method

TABLE 1. Applying prime numbers in ES and ET

S	T	s^2	T^2	Equation(2) and (6)	Equation(3) and (7)
3	1	9	1	8	10
5	1	25	1	24	26

7	3	49	9	40	58
9	3	81	9	72	90

used to provide security for data [8]. CBB22 method used to provide security for data [9]. To overcome this problem introduced the novel method RJB32(Rajaprakash Jaichandran and Bagath Basha) 32.

2. METHODS

• RJB32 method are Table 2 and Table 3 are encryption and decryption.

3. ENCRYPTION

• A is a data analyzed matrix. [10]

$$EnA = \begin{pmatrix} 102 & 103 & 104 \\ 106 & 105 & 105 \\ 108 & 110 & 102 \end{pmatrix}$$

Se=1/3

Equation (1)"

$$EnA = \begin{pmatrix} 102/3 & 103/3 & 104/3 \\ 106/3 & 105/3 & 105/3 \\ 108/3 & 110/3 & 102/3 \end{pmatrix}$$

"Pair-1(8,10)"

$$EnA = \begin{pmatrix} 110/3 & 103/3 & 104/3 \\ 106/3 & 105/3 & 105/3 \\ 108/3 & 102/3 & 102/3 \end{pmatrix}$$

TABLE 2. RJB32 Encryption

STEPS	RJB32 ENCRYPTION	
1	Analyzed the prediction data from social media.	
2	2 Convert the prediction data to matrix A.	
3	$EnA = Se^{\hat{a}} A (1)$ where EnA is encryption matrix A .	
4	Applying the prime numbers ES and ET.	
5	Calculate the ES^2 and ET^2 .	
6	$EA1 = ES^2 - ET^2$ (2)	
7	$EB1 = ES^2 + ET^2 $ (3)	

	8	If EA1 and EB1 value will be above size of the matrix then add			
		and make it single digit values			
	9	Swap EA1 and EB1 in EnA			
	10	$CA = C_i < -> (C_{i+(n-m)})$ (4) where CA is Column encrypted matrix, C is a columns, i, n and m is column numbers			
		C is a columns, i, n and m is column numbers			

"Pair-2(24,26)"

$$EnA = \begin{pmatrix} 110/3 & 103/3 & 104/3 \\ 106/3 & 105/3 & 102/3 \\ 108/3 & 105/3 & 102/3 \end{pmatrix}$$

"Pair-3(40,58)"

$$EnA = \begin{pmatrix} 110/3 & 103/3 & 104/3 \\ 106/3 & 105/3 & 102/3 \\ 108/3 & 105/3 & 102/3 \end{pmatrix}$$

"Pair-4(72,90)"

$$EnA = \begin{pmatrix} 110/3 & 103/3 & 104/3 \\ 106/3 & 105/3 & 102/3 \\ 108/3 & 105/3 & 102/3 \end{pmatrix}$$

Equation(4)

$$CA = \begin{pmatrix} 104/3 & 103/3 & 110/3 \\ 102/3 & 105/3 & 106/3 \\ 102/3 & 105/3 & 108/3 \end{pmatrix}$$

4. DECRYPTION

$$DnA = \begin{pmatrix} 104/3 & 103/3 & 110/3 \\ 102/3 & 105/3 & 106/3 \\ 102/3 & 105/3 & 108/3 \end{pmatrix}$$

TABLE 3. RBJ32 Decryption

STEPS	RJB32 DECRYPTION		
1	$DA = D_i < -> (D_{i+(n-m)})$ (5) where CA is Column encrypted matrix, C is a columns, i, n and m is column numbers		
1	C is a columns, i, n and m is column numbers		
2	Applying the prime numbers DS and DT.		
3	Calculate the DS^2 and DT^2 .		
4	$DA1 = DS^2 - DT^2$ (6)		
5	$DB1 = DS^2 + DT^2 (7)$		
6	Swap A1 and B1		

7	DnA = A/Se (8)					
,	where DnA is decryption matrix A.					

Equation(5)

$$DnA = \begin{pmatrix} 110/3 & 103/3 & 104/3 \\ 106/3 & 105/3 & 102/3 \\ 108/3 & 105/3 & 102/3 \end{pmatrix}$$

"Pair-1(90,72)"

$$DnA = \begin{pmatrix} 110/3 & 103/3 & 104/3 \\ 106/3 & 105/3 & 102/3 \\ 108/3 & 105/3 & 102/3 \end{pmatrix}$$

"Pair-2(58,40)"

$$DnA = \begin{pmatrix} 110/3 & 103/3 & 104/3 \\ 106/3 & 105/3 & 102/3 \\ 108/3 & 105/3 & 102/3 \end{pmatrix}$$

"Pair-3(26,24)"

$$DnA = \begin{pmatrix} 110/3 & 103/3 & 104/3 \\ 106/3 & 105/3 & 105/3 \\ 108/3 & 102/3 & 102/3 \end{pmatrix}$$

Pair-4(10, 8)"

$$DnA = \begin{pmatrix} 102/3 & 103/3 & 104/3 \\ 106/3 & 105/3 & 105/3 \\ 108/3 & 110/3 & 102/3 \end{pmatrix}$$

"Equation (8)"

$$EnA = \begin{pmatrix} 102 & 103 & 104 \\ 106 & 105 & 105 \\ 108 & 110 & 102 \end{pmatrix}$$

5. CONCLUSION

The present world is data world; without this data cannot survive in present stage. This data produced more from social media; this media data is public data; This public data not have good security; so to overcome this issue we apply the Salsa method. This method easily hack the data from the hackers. RBJ32 method has 5

steps. 1. Applying the key and multiply that key; 2. To apply the prime number in the S^2 and T^2 ; 3. To calculate the EA1 and EA2; 4. To swap the EA1 and EA2 in matrix EnA; 5. Apply the column operations. The RJB32 method provide good security while compared with Salsa method. In the future, to add the prime factors operations of the data security.

REFERENCES

- [1] P. A. BABU AND J. J. THOMAS: A Practical Fault Attack on ARX-like Ciphers with a Case Study on ChaCha20, Wo. on Fa. Di. and To. in Cr. (2017), 33-40.
- [2] S. V. D. KUMAR, S. PATRANABIS, J. BREIER, D. MUKHOPADHYAY, S. BHASIN, A. CHATTOPADHYAY, AND A. BAKS: Freestyle, a randomized version of ChaCha for resisting offline brute-force and dictionary attacks, IE. tr. on In. Fo. and Se. (2018).
- [3] A. ADOMNICAI, J. J. A. FOURNIER, AND L. MASSON: Bricklayer Attack: A Side- Channel Analysis on the ChaCha Quarter Round, Pr. in Cr. In., Le. No. in Co. Sc., Sp. 65-84.
- [4] B. MAZUMDAR, S.K. S. ALI AND O. SINANOGLU: Power Analysis Attacks on ARX: An Application to Salsa20, On-. Te. Sy. IE. (2015), 40-43.
- [5] C. WATT, J. RENNER, N. POPESCU, S. CAULIGI, AND D. STEFAN: CT-Wasm: Type- Driven Secure Cryptography for The Web Ecosystem, Pr. ACM Pr. La. PO. (2019), 77:1-77:29.
- [6] C. BAGATH BASHA, S. RAJAPRAKASH: Enhancing The Security Using SRB18 Method of Embedding Computing, Mic. and Mic 103125, (2020).
- [7] C. B. BASHA, S. RAJAPRAKASH: Securing Twitter Data Using Srb21 Phase I Methodology, Int. Jou. of Sci. and Tec. Res. 8(12) (2019), 1952–1955.
- [8] C. B. BASHA, S. RAJAPRAKASH: Applying The CBB21 Phase 2 Method For Securing Twitter Analyzed Data, Adv. In Mat.: Sci. Jou. 9(3) (2020), 1085-1091.
- [9] C. B. BASHA, S. RAJAPRAKASH, V. V. A. HARISH, M. S. KRISHNA, K. PRABHAS: Securing Twitter Analysed Data Using CBB22 Algorithm, Adv. In Mat.: Sci. Jou. 9(3) (2020), 1093-1100.
- [10] C. B. BASHA, K. SOMASUNDARAM: A Comparative Study of Twitter Sentiment Analysis Using Machine Learning Algorithms in Big Data, Int. Jou. of Rec. Tec. and Eng. 8(1) (2019), 591-599.
 - [11] Somasekar, J. & Sharma, A. & Reddy, N. & Reddy, Y.. (2020). IMAGE ANALYSIS FOR AUTOMATIC ENUMERATION OF RBC INFECTED WITH PLASMODIUM PARASITES-IMPLICATIONS FOR MALARIA DIAGNOSIS. Advances in Mathematics: Scientific Journal. 9. 1221-1230. 10.37418/amsj.9.3.48.

- [12] A. SHARMA1 AND J. SOMASEKAR "Contrast Image Construction Technique for Medical Imaging" published in Advances in Mathematics: Scientific Journal (Adv. Math., Sci. J.) vol-9-no-6-2020 (pp 3325–3329)
- [13] *Rohini Goel, Avinash Sharma, and Rajiv Kapoor,* "Object Recognition Using Deep Learning" published in Journal of Computational and Theoretical Nanoscience Vol. 16, 4044–4052, 2019
- [14] Santosh, Mamta & Sharma, Avinash. (2019). A Proposed Framework for Emotion Recognition Using Canberra Distance Classifier. Journal of Computational and Theoretical Nanoscience. 16. 3778-3782. 10.1166/jctn.2019.8250.
- [15] Mamta Santosh, Avinash Sharma, "Facial Expression Recognition using Fusion of LBP and HoG Features" published in International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8 Issue-8 June, 2019