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Abstract: The accurate location of epileptic seizures by interpreting an EEG 

(Electroencephalogram) signal is highly demanding and involves skilled neurologists. In 

this study, the EEG is analyzed using the Tunable-Q Wavelet Transform (TQWT) method 

for identifying seizures by splitting an EEG signal into several sub-bands. The entropy 

computed for each sub-band signifies the nonlinearity in an EEG signal. The other novel 

parameters viz correntropy, centered correntropy (CCE) and correntropy coefficient assess 

the nonlinearity of EEG signal and forms the basis for classification. The study has been 

done on the freely accessible Bonn University EEG database and outperforms in terms of 

complexity. When contrasted to the existing state-of-the-art methods, 100% accuracy has 

been achieved in discriminating seizure, seizure-free signals, and non-seizure EEG signals 

using Random Forest Classifier. Moreover, the computation of the proposed features is 

fast, and the system is easy to implement. 

Keywords:TQWT, entropy, correntropy, correntropy coefficients, seizures 

 

1. INTRODUCTION 

A seizure is a momentary event occurring due to the abrupt firing of millions of neurons. Epilepsy is 

caused by recurrent unprovoked seizures. Epilepsy has influenced around 65 million people 

worldwide [Epilepsy, 2019]. The rate of occurrence of epilepsy around the world is around 0.2%. 

Subsequently, epileptic patients are to be handled carefully to avoid sudden injuries and loss of lives. 

The conventional techniques for the investigation of epileptic patients are based on analyzing EEG 

signals. However, over a decade some automated frameworks supported by machine learning have 

been widely explored by researchers and may replace the existing systems to provide better control of 
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the problem. Among them, Fourier spectral analysis has been used frequently for feature extraction of 

the EEG signal assuming the signal to be stationary. However, the available literature [Ghaderyan et 

al. 2014; Kaur & Singh 2017] manifests the random nature of EEG indicators. In the past, several 

techniques have been deployed to decompose and analyze the EEG signal by Discrete Wavelet 

Transform (DWT). The sub-bands and their coefficients obtained by decomposition of EEG are used 

to extract features to discriminate seizure subjects and healthy subjects [Y. Kumar et al. 2012;O. Faust 

2015; R.Sharma et al.2015]. In recent years, the empirical mode decomposition (EMD) method 

[Huang et al. 1998; R. Pachoriet al. 2014] has gained significant importance for analyzing the EEG 

signals by its decomposition into simpler modes referred to as intrinsic mode functions (IMF). The 

mean frequency of IMF computed with Fourier Bessel Expansion is used to discriminate between 

seizures and non-seizure [Pachori 2008]. However, the number of IMF obtained for every signal is not 

fixed and the interpretations of results are complex. Using the EMD approach entropy [Acharya et al. 

2015]is extracted for each IMF to distinguish focal and non-focal EEG signals. 

 

In literature, several non-linear techniques [Kannathal 2005, A. R. Hassan 2016] have been projected 

to perceive non-linear characteristics of time-series such as the degree of randomness of EEG signal is 

measured in terms of entropy. The approximate entropy (ApEn), Sample Entropy (SampEn), Phase 

Entropy 1 (S1), and Phase Entropy 2 (S2) were separated [U.R. Acharya et al. 2012] to segregate pre-

ictal, ictal, and inter-ictal state. The simple features like Pythagorean mean (arithmetic, geometric and 

harmonic mean) have likewise been utilized to categorize seizures, seizure-free and normal subjects 

[Shanir, Iqbal, Khan, & Farooq, 2018]. The other non-linear features viz. fractal dimension, 

correlation dimension [Lehnertz et al. 1995], and Lyapunov exponent [N.F.Guler et al. 2005] provide 

significant information about the different states of mind used for EEG analysis and classification. 

The focal EEG signal was recorded for feature extraction to distinguish different classes of EEG 

signals using the EMD-DWT domain [Das & Bhuiyan 2106]. The epileptic seizure detection has also 

been done from scalp EEG signals [A. R. Hassan et al 2016]. A non-linear technique for extraction of 

multi-domain features has also been adopted for epileptic seizure detection [Wang et al., 2017]. The 

accurate detection of seizure onset /offset has also been done using orthonormal triadic wavelet-based 

features [Chandel, Upadhyaya, Farooq, & Khan, 2019]. The autoregressive modeling approach 

adopted [Khan & Farooq, 2009] to detect focal seizures using an artificial neural network (ANN) is 

also significant.  

 

Recently, a new framework Tunable-Q Wavelet-Transform (TQWT) has been used for the analysis of 

biomedical signals. This approach adopted for the analysis of the EEG signal provides enhanced 

sparse signal representation [R. Sharma et al. 2017]. The tuning factor Q affects the accuracy of the 

system [P.U.Kiran et al. 2018] and with variable Q & J, the signal is decomposed into sub-bands and 

the sub-bands with maximum energy are utilized for feature extraction. It has been analyzed that in 
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the TQWT framework, computation of Quality factor-based K-NN entropies was not enough for the 

classification of different classes of EEG signals. Therefore, multi-scale filtering [Abhijit 

Bhattacharyya et al. 2017] was applied to discriminate between seizures and non-seizures. 

In this study, the TQWT technique has been deployed for the decomposition of the EEG signal into a 

fixed no. of sub-bands. The four non-linear features namely entropy, correntropy, centered correntropy, 

and correntropy coefficient is extracted for classification purpose. Entropy, a measure of chaos, used to 

characterize random EEG signals is computed for sub-bands. The other features extracted based on the 

Information Theoretic Learning (ITL) toolbox are correntropy, centered correntropy, and correntropy 

coefficient. Correntropy contains information not only about the distribution of the stochastic process 

but also about its time structure. Hence, a useful parameter for the analysis of nonlinear EEG signals. 

The centered correntropy which is equivalent to the covariance between two random variables is also 

computed from correntropy. In the ITL toolbox, a parameter analogous to the correlation coefficient 

i.e. correntropy coefficient is also computed. All these features are used as input to distinguish EEG 

signals of seizures, non-seizures, seizure-free, and normal subjects. 

2. METHOD 

The methodology adopted in this study has been shown in the block diagram shown in Figure 1.  

 

Fig 1: Proposed Methodology 

 

i) Data Availability: 

The EEG data for the study has been extracted from a freely obtainable database of Bonn University, 

Germany [Andrzejak et al. 2001]. The data has been recorded using a sampling frequency of 173.61 

Hz for 23.6 sec using100 single-channel EEG electrodes. It has five subsets: Z, O, N, and F for non-

seizures and S for seizures, each consisting of 100 single-channel EEG signals. This study has been 

performed for three groups of EEG signal (i) Seizure and Seizure-free (S-NF)(ii) Seizure and Normal 

(S-ZO) (iii)Seizure, Normal and Seizure-Free (S-ZO-NF). The EEG signal of each dataset has been 

represented in Figure 2. 
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Fig 2 EEG of Seizure-Free (F-N), Non-Seizure (O-Z), and Seizure (S) Dataset 

In Fig. 2, it can be observed that the peak amplitude of the seizure signal is much higher as compared 

to non-seizure. 

ii) Tunable Q-Wavelet Transform 

TQWT (Tunable-Q Wavelet-Transform) is a powerful tool for the examination of oscillatory signals 

like EEG, Electromyogram (EMG), and Electrocardiogram (ECG), etc. TQWT (Tunable-Q Wavelet-

Transform) is a discrete-time wavelet converted which, unlike other transforms, can adjust the tuning 

factor Q to provide a better sparse signal representation of the EEG signal. A small value of Q can be 

chosen for transient evaluation and a higher value of Q for the examination of the oscillatory behavior 

of the signals. Q can be defined [J. Gubner and W. Chang 1995] as: 

 

Q=
fB    [1] 

  

Where f is the middle frequency and B is the bandwidth of the signal. Another advantage of TQWT 

over DWT is that by altering the value of Q, the shape of the wavelet gets altered.  

 

Quality factor (Q), redundancy (r), and no. of decomposition levels (J) are the input parameters for the 

decomposition of a signal. In the next section, we discussed the extracted features viz entropy, 

correntropy, centered correntropy, and correntropy coefficient which has been found instrumental in 

analyzing and distinguishing different EEG signals. 

 

Entropy: Entropy is a measure of chaos or randomness in the signal. The intricacy of a time series is 

described in terms of entropy and can be computed as: 

 

H=-∑ 𝑋𝑖 𝑙𝑜𝑔 𝑋𝑖𝑀𝑖=1   [2] 

 

where Xi is the amplitude of the i
th
 signal and M is the length of the signal. 
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The entropy plots for S-ZO-NF are shown in Fig. 3 

 

iii) Correntropy 

Correntropy is a nonlinear measure of the correlation between two signals. It can transform each 

signal nonlinearly into a feature space through a positive kernel function that computes the 

generalized correlation in that space. In the discrete-time domain, CCE can be computed as follows 

[Melia et al., 2014]: 

 

V[k]=
1𝑀−𝑘+1 ∑ 𝑀𝑛=𝑘 (𝑦[𝑛] − 𝑦[𝑛 − 𝑘])         [3] 

 𝑉̂ = 1𝑀2 ∑ 𝑀𝑘=1 ∑ (𝑦[𝑛] − 𝑦[𝑛 − 𝑘])𝑀𝑛=𝑘̂ [4] 

 

where (⋅ , ⋅) a shift-invariant Mercer kernel  represents the lag, 𝑉̂ is the mean correntropy and 

{y[1],y[2],….y[N]} represents a data set having M samples.  

 

The correntropy plots for S-ZO-NF are shown in Fig. 4 

iv) Centered Correntropy:  

 

To decrease the effect of dc bias, the mean value𝑉̂ of the correntropy can be deducted from the 

correntropy to acquire centered correntropyVc[k] [Ravi Shankar Reddy & Rao, 2017]given as: 

Vc[k]=V[k]-𝑉̂[9]  [5] 

 

In this study the Gaussian kernel function [Shawe Taylor and Cristianini, 2004](𝑦[𝑛], 𝑦[𝑛 −𝑘])   has been used to compute correntropy and defined as:  

 

(𝑦[𝑛], 𝑦[𝑛 − 𝑘]) = 1𝜎√2𝜋 𝑒{−(𝑦[𝑛]−𝑦[𝑛−𝑘])22𝜎2 }
[6] 

 

The centered correntropy plots for S-ZO-NF are shown in Fig. 5 

 

v) Correntropy Coefficient:  

 

The correlation between two random variables is measured in terms of the correntropy 

coefficient[Gunduz and Principe, 2009]. It is equivalent to a well-known parameter, correlation 

coefficient, which is used to find linear interdependence between two signals x & y. It can be 
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computed as: 

 

r=
1𝑁 ∑ (𝑥(𝑝)−𝑥)̅̅ ̅𝜎𝑥𝑀𝑝=1 (𝑦(𝑝)−𝑦)̅̅ ̅𝜎𝑦 [7] 

 

where M is the length of the signal, 𝑥̅&𝜎𝑥2 are the mean and variance of x whereas𝑦̅&𝜎𝑦2are the mean 

and variance of y. The ITL toolbox used for computation of correntropy-centered correntropy and 

correntropy coefficient is accessible at http://www.sohanseth.com/Home/codes.  

 

                                           

(a)        (b) 

 

 

(c) 

 

Fig 3 Entropy (a) Seizure Dataset(S) (b) Normal  Dataset (Z-O) (c) Seizure-Free Dataset (N-F) 

 

In Fig. 3, the entropy of sub-band 1 has been plotted which depicts that seizure EEG has a large no. of 

peaks as compared to non-seizure and seizure-free EEG signals.  

 

                                     

(a)        (b) 
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(c) 

 

Fig 4 Correntropy (a) Seizure Dataset (S) (b) Normal Dataset (Z-O). (c)  Seizure-Free Dataset 

(N-F) 

 

The correntropy plotted in Fig. 4 for seizure,seizure-free and non-seizure EEG signal shows a higher 

amplitude range for seizure EEG signal. 

 

 

(a)                                             (b)                                    (c) 

 

Fig 5 Centered Correntropy (a) Seizure Dataset (S) (b) Normal Dataset(Z-O) (c)  Seizure-Free 

Dataset (N-F) 

 

Similarly, in Fig 5, the effect of dc bias has been eliminated and the corresponding seizure-free EEG 

signal has a wider amplitude range. 

 

3. PERFORMANCE EVALUATION 

 

In this study, the Waikato environment for knowledge analysis (WEKA) [Eibe Frank et al. 2016] 

software is used for the classification of EEG signals. In the study, it has utilized the Random Forest 

classifier available in the weka toolbox. Accuracy, specificity, and sensitivity are the performance 

parameters of the classifier defined as: 

 

4708



European Journal of Molecular & Clinical Medicine  

ISSN 2515-8260   Volume 07, Issue 11, 2020 

 

2477 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%)  =  𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃  𝑥 100 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(%)  =  𝑇𝑃𝑇𝑃 + 𝐹𝑃  𝑥 100 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(%)  =  𝑇𝑁𝑇𝑁 + 𝐹𝑃  𝑥 100 

 

where TP, FN, TN, and FP are total numbers of true-positive samples, false-negative samples, true-

negative samples, and false-positive samples respectively. 

 

4. RESULTS AND DISCUSSION 

 

TQWT is used to decompose the EEG signals that have been received from the seizure dataset (S). It 

includes different datasets such as normal dataset (Z, O) and seizure-free dataset (N, F) which are 

represented as Q=3,r =3, J=9. EEG signal has been decomposed into (J+1) sub-bands. There is the 

computation of entropy that ranges from sub-band 2 to sub-band 5. Additionally, the ITL toolbox was 

also used to extract correntropy, centered correntropy, and correntropy coefficients.   

To diversify the varied categories of EEG, a commonly used feature selection scheme was executed 

on the extracted features. The evaluation was performed by using a statistics toolbox that had a 

confidence level of 95%. It was found that when the p-value was equal to less than 0.5, then the value 

of the KW test is considered to be discriminately significant. Fig.6- Fig.8 showed that the p-value 

outcomes were small and discriminated against each class of signals when the p-value was less than 

0.05. The comparison in Table 1 shows the accuracy achieved in the proposed technique as compared 

to existing state-of-art methods. 

 

In the EMD technique, there is a limitation of IMFs signals as they are not fixed and highly dependent 

on the frequency of the signal. However, in the TQWT approach, there is the presence of a fixed 

number of sub-bands that help in the extraction process. Thus, it facilitates a comparison between the 

sub-band and each class of signals. As a result, there is a simplified interpretation of outcomes that 

can be attained for all the sub-bands.  

For the discrimination of each class of signals, different processes such as entropy, correntropy, 

centered correntropy, and correntropy coefficient are computed. The data that is extracted from each 

data set acts as an input for the Random Forest classifier. Table 2 represents that each feature exhibits 

100% classification accuracy. 
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Kruskal Wallis Anova Test Results 

(1) Seizure Vs Normal 

 

(a)        (b) 

 

(c)                                                                 (d) 

Fig 6 Entropy estimation for different sub-bands: Sub-band 2 (p=6.1059 x10
-15

)   Sub-band 3 

(p=2.9029x10
-26

) Sub-band 4 (p=6.1634x10
-19

) Sub-band 5 (p=3.2370x10
-24

) 

 

Figure 6 includes four graphs a, b, c, and d which were related to the estimation of entropy in different 

sub-heads. While ascertaining graph a, the value of sub-band 2 was recorded to be p=6.1059 x10-15. 

In the case of graph b, the value of sub-band 3 was recorded to be p=2.9029x10-26, while in graph c, 

the value of sub-band 4 was recorded to be p=6.1634x10-19. The graph d showed the sub-band 5 

value of p=3.2370x10-24.  
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(2) Seizure Vs Seizure-Free 

 

(a)                                 (b) 

 

(c )       (d) 

Fig 7 Entropy Estimation or different sub-bands: Sub-band 2(p=1.8647x10
-33

)   Sub-band 3 

(p=1.6590x10
-32

) Sub-band 4 (p=1.1206x10
-20

) Sub-band 5(p=3.4044x10
-25

) 

 

       Figure 7  includes four graphs a, b, c, and d which were related to the estimation of entropy in 

different sub-heads. While ascertaining graph a, the value of sub-band 2 was recorded to be 

p=1.8647x10-33. In the case of graph b, the value of sub-band 3 was recorded to be p=1.6590x10-32, 

while in graph c, the value of sub-band 4 was recorded to be p=1.1206x10-20. The graph d showed 

the sub-band 5 value of p=3.4044x10-25 
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 (3)Seizure Vs Seizure-Free Vs Normal 

 

(a) (b) 

 

                                      (c)     (d) 

 

Fig 8 Entropy computation for different sub-bands: Sub-band 2 (p=6.0674 x10
-20

)   Sub-band 3 

(p=5.5837x10
-28

) Sub-band 4 (p=1.7277x10
-25

) Sub-band 5 (p=7.5962x10
-32

) 

 

Figure 8 includes four graphs a, b, c, and d which were related to the estimation of entropy in different 

sub-heads. While ascertaining graph a, the value of sub-band 2 was recorded to be p=6.0674 x10-20. 

In the case of graph b, the value of sub-band 3 was recorded to be p=5.5837x10-28, while in graph c, 

the value of sub-band 4 was recorded to be p=1.7277x10-25. The graph d showed the sub-band 5 

value of p=7.5962x10-32. 
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Table 1: Comparison of the proposed features for classification of normal, seizure-free, and seizure 

EEG signals with the existing methods studied on the same dataset 

 

Auth

or 

Method Dataset Accuray 

Tzallasetal. (2007) Time-Frequency  based features 

and ANN 

S-ZO-NF 97.72% 

Acharya et al. 

(2012) 

Approximate entropy, sample 

entropy, and phase entropy with 

SVM classifier 

S-ZO-NF 98.1% 

Peker et al. (2015) Dual-Tree complex wavelet 

transform and complex-valued 

neural networks 

S-ZO-NF 98.28% 

G.Ravi Shankar 

Reddy et al. (2017) 

TQWT, CCE, RF MLP, and LR S-ZO-NF 98.2% 

Bhattacharya et al. 

(2019) 

TQWT based multiscale k-NN 

entropy 

S-ZO-NF 98.6% 

Proposed Method TQWT, Entropy, Correntropy, 

Centered Correntropy, Correntropy 

Coefficient using Random Forest 

classifier 

 

 

S-ZO-NF 100% 

 

 

Table 1 describes the facts related to the comparison between the proposed features for the 

classification of normal, seizure-free, and seizure EEG signals with the existing methods studied on 

the same dataset. The table established a comparison between the works of five different researchers 

were Tzallas etal. (2007), Acharya et al. (2012), Peker et al. (2015), G.Ravi Shankar Reddy et al. 

(2017), Bhattacharya et al. (2019). As per the comparative analysis, it was found that the most 

common method that was used by the researchers was TQWT and entropy. The highest S-ZO-NF was 

recorded to be 98.6% and the lowest S-ZO-NF value was recorded to be 98.1%.
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Table 2 Comparison of Accuracy, Sensitivity & Specificity 

 

Parameter Seizure, Seizure-Free Seizure, Non-Seizure Seizure, Non-Seizure, Seizure Free 

Entropy Accuracy        100% 

Sensitivity      100% 

Specificity      100% 

Accuracy       100% 

Sensitivity     100% 

Specificity     100% 

Accuracy        100% 

Sensitivity      100% 

Specificity      100% 

Correntrop

y 

Accuracy          100% 

Sensitivity       100% 

Specificity       100% 

Accuracy      100% 

Sensitivity    100% 

Specificity    100% 

Accuracy          100% 

Sensitivity        100% 

Specificity        100% 

Centered 

Correntrop

y 

Accuracy          100% 

Sensitivity        100% 

Specificity        100% 

Accuracy       100% 

Sensitivity     100% 

Specificity     100% 

Accuracy          100% 

Sensitivity        100% 

Specificity        100% 

Correntrop

y coefficient 

Accuracy          100% 

Sensitivity        100% 

Specificity        100% 

Accuracy       100% 

Sensitivity     100% 

Specificity     100% 

Accuracy        100% 

Sensitivity      100% 

Specificity      100% 

 

5. CONCLUSION: 

 

The revealing of epileptic seizures has been projected and accomplished by utilizing the EEG dataset. 

The non-linear features viz. entropy, correntropy, centered correntropy, correntropy coefficient forms 

the basis of classification using Random Forest Classifier. The performance parameters achieved for 

three classes of signals for different combinations of parameters have been listed in Table 2. The 

investigational consequences have been replicated that the anticipated parameters are effective for the 

identification of epileptic EEG signals and can assist epileptologists in the accurate diagnosis and 

treatment of seizure patients. In comparison with the state-of-the-art methods, the proposed features 

have given 100% accuracy. Moreover, the computation is fast, and the system can be implemented 

easily. In the future, this approach may be easily adapted for the detection of other neurological 

disorders as well. 
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