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Abstract: Wireless Sensor Network (WSN) plays a significant role in Internet of Things (IoT) 

and it incorporated to the physical atmosphere for observing the parameters like 

temperature, pressure and so on. The nodes in WSN are limited interms of energy, storage, 

bandwidth and computation. As the communication cost is greater when compared to 

sensing and processing cost, a number of data compression models are applied to minimize 

the quantity of data being forwarded in the network. This paper introduces a new Bit 

Reduction with Burrows Wheeler Transform called BR-BWT based data compression 

technique in WSN. The presented BR-BWT model performs encoding of data in two ways 

namely bit reduction using codeword allocation and BWT based encoding processes. 

Initially, a bit reduction process takes place using predefined codeword allocation process to 

determine the codeword for every character in the WSN data. Besides, the BWT based 

compression process takes place to further compresses the bit reduced data. To validate the 

performance of the BR-BWT model, a real time WSN dataset is tested and the results are 

discussed under diverse aspects. 
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1. INTRODUCTION: 

In recent times, the development in wireless networks and Micro-Electro-Mechanical-

System (MEMS) prompts the improvement of small and inexpensive sensor nodes. WSN have 

developed into a trending investigation topic because of its applications in different areas, like, 

observing environment, monitoring boundary, managing disaster, smart building, smart cities, 

and so on [1]. WSN comprises an enormous number of self-governing, dedicated, portable 

sensors placed arbitrarily in the interested field for monitoring the physical variables in the 

environmental. It is generally positioned unevenly in the target area to gauge physical values 

such as humidity, pressure, temperature, and so on. Every sensor node comprises of 4 

fundamental parts such as sensing unit, processing unit, transmission unit, and power supply 

[2]. A sensor node could be measured as an embedded model, which monitors the surrounding 

area, accumulates the information, and communicate it to the base station (BS) through single 

or multi-hop transmission. As the sensor nodes are operated with inbuilt batteries and need to 

work for a long duration, it is difficult to recharge batteries [3]. Energy efficiency is measured 
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as a significant part in configuring WSN. Several research communities demonstrate that 

extreme energy is used for transmission than sensing and energy computation [4]. In WSN, the 

main issue to save energy depends on the efficient way of transmitting huge amount of data. 

There are two standard approaches to decrease energy utilization and enhance the system 

lifetime namely scheduling and data aggregation. 

The primary process is the use of sleep state and dynamic state modes in the sensor [5], [6], 

[7]. A portion of the corresponding nodes could go into the sleep state and need more nodes 

count to stay alive for the whole area coverage and furthermore it highly preserves energy. In 

the subsequent process, data compression procedures are utilized for reducing data 

transmission to accomplish better power efficiency. It minimizes the entire bit count expected 

to store or transmit a huge data [8]. It is carried out by the representation of the data in its 

compacted manner. There are different compression methods concerning few concepts, and 

appropriate for various data types. For data compression, the method generally required to 

evaluate the data, recognizes the replication, and removes it. No general and effective 

compression method has been developed for extensive range of data types. 

According to the value of decompressed data, data compression could be grouped into 3 

different methods: lossy, lossless, and irreversible compression. The initial lossy compression 

is utilized for accumulating the information from where definite data could be acquired after 

decompression. Huffman coding [9] is one of the lossless compression methods which is 

applied frequently. Secondly, lossless is defined as process of eliminating a part of data [10]. 

The real-time data is not obtained from the decompression of static compression, like 

irretrievable compression. Text compression is typically accomplished through the allocation 

of shorter codes for normal messages whereas longer codes for unknown texts. Also, it is 

encoded using query tables with previous code length. Many studies have stated that, the newly 

deployed models are not applicable for today's applications since there are reasonable merits 

and equal number of demerits like storage and processing speed. As WSN data includes 

arithmetical values, the architecture of compression model for that information would be 

extremely helpful and prompts better compression execution [20-24].  

Different kinds of text compression models were deployed as defined in the study. Run 

Length Encoding (RLE) [1] is defined as a unique character encoding. If the input character 𝑑 

emerges for n consecutive iterations, then 𝑛 times of input sequence has been substituted by a 

pair 𝑛𝑑. But, it is not as effective in data compression while the redundancy in input data is 

minimum. Followed by, Huffman coding [2] allocates diverse length codes for input sequence 

which depends upon the number of times a smaller codeword appears as well as maximum 

codeword for rare existence of characters. Although it can be executed simply, decoding is 

highly complex to find the final bit of coded character.  

Arithmetic coding is mainly used for reducing the constraints involved in Huffman coding. 

It is accomplished by encoding the data into single character. Each message is depicted by real 

values from [0, 1], where 0 ≤  𝑥 <  1. However, it is composed of few constraints like the 

decoding task is initialized after the complete data encoding is processed. The existence of a 

single bit failed data leads to the failure of whole document. Lempel-Ziv-Welch (LZW) coding 

[3] is meant to be a dictionary relied coding model that develops a dictionary for sequentially 

existing patterns. Basically, LZW replaces the predicted patterns with references for a 

dictionary. If the size of dictionary has been improved, then the references values are also 

enhanced. In order to resolve the limitations involved in this model, the above mentioned 

methods were developed and compute the process accordingly. 

Lightweight Temporal Compression (LTC) is mainly applied for eliminating the faults in 

all readings, by managing a knob [4]. By compression, future savings are carried out with 

maximum errors where K-RLE is an extended method of RLE and defined as a string of N 
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values from [K-d, K+d] as a pair (N,d), in which K denotes the accuracy level while d shows 

a data item [5]. In specific, for resource composed of WSN [6], a lightweight compression 

technology is an expanded version of LZW dictionary relied coding so called Sensor LZW (S-

LZW) has been deployed. However, the major issue in this approach is that, increasing 

dictionary size and to enhance the compression task. Encoding 528 bytes of data with extra 

interdependent packets which is a tedious process. Lossless Entropy Compression (LEC) [7] is 

defined as a predictive coding model. LEC evaluates the variations from successive sensor 

values and classifies it into diverse classes where the volumes are improved drastically. Among 

S-LZW, LEC has accomplished better compression; however, it is static and inapplicable for 

the modifications of source information statistics.  

Sequential LEC (S-LEC) model has been developed [8] as independent compression 

technique for solving the limitations. The data is compressed in WSN by applying frequent 

context data from nearby residues. The demerits can be avoided and reduced using adaptive 

lossless data compression (ALDC) [9]. In order to process a best compression, ALDC model 

applicable to apply the changes present in source data statistics.  Even though, the ALDC is 

independent, still it is a worst performer. The detection errors were compressed using an 

entropy encoder [10] while ALF has been applied to examine future M instances in Adaptive 

Linear Filtering Compression (ALFC). The changes made in the source is highly applicable in 

reducing the necessity of co-efficient extraction in adaptive prediction model.  

Predictive coding used in 2 modal transmission (TMT) is deployed [11], that contains 2 

modules namely compressed as well as non-compressed. In case of compressed mode, the 

range of [−R, R] is forwarded by encoded bits while in non-compressed mode, the actual data 

of error norms exist from [−R, R]. In order to reduce the function of maximum error terms 

detection, it solves the constraints of reduced code efficacy. For reaching the lower storage and 

rapid compression model, the Fast and Efficient Lossless Adaptive Compression Scheme 

(FELACS) has been deployed [12]. Thus, the energy consumption and compression 

effectiveness has been improved using compression process effectively.  

In resource-based networks, where the model is independent for data accuracy; else, it is 

operated in exception state, data minimization approach is highly applicable. In case of sensors 

[13], an adaptive sampling technique has been presented for determining the best sampling 

frequencies. For snow-monitoring domains, sensor devices have been applied. With respect to 

classical fixed-rate model, the final outcome depicted that adaptive models have minimum 

amount of instances.  For remote as well as expanded aquatic state, a novel adaptive sampling 

model for energy control in robotic observation of water quality has been initialized. For the 

enhancement of sampling task, a multivariate sampling (MuSA) model [14] with the 

application of component analysis (CA) technique. The final outcomes show that MuSA 

decreases the power consumption and delay in data transmission process. In order to reduce 

the consolidation of data transmission, a data-based model is proposed in [15].  

A data-driven adaptive sampling algorithm (DDASA) has been utilized for maximizing the 

energy efficiency [16]. A one step decoding is reformed for original data, [17] examine the 

compressed sensing against network coding. Therefore, it demonstrates the coding and 

reformation model that activates accurate reconstruction. In order to reach effective power 

utilization in data collection, sparsest random sampling model for cluster-based compressive 

data gathering (SRS-CCDG) in WSNs has been presented [18], in which the sparsest random 

sampling method have been combined into WSNs. Furthermore, explanatory methods are 

applied to develop a correlation over power cost as well as cluster size at the time of using 

diverse inter-cluster as well as intra-cluster transmission approaches. Finally, the simulation 

outcome pointed that the SRS-CCDG enhances the independency of model and reduces the 

power cost. 
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This paper introduces a new BR-BWT based data compression technique in WSN. The 

presented BR-BWT model performs encoding of data in two ways namely bit reduction using 

codeword allocation and BWT based encoding processes. Initially, a predefined codeword 

allocation process is carried out to reduce the bit count needed for every character in the WSN 

data. The allocation of codeword significantly reduces the data size into 50% by assigning a 

predefined 4-bit codeword to 8-bit data. Moreover, the BWT based compression process takes 

place to further compress the encoded data in WSN. To validate the performance of the BR-

BWT model, original WSN dataset is tested and the final outcomes are discussed under diverse 

aspects. 

 

2. RESEARCH ELABORATIONS  

The newly deployed BR-BWT model depends upon a single bit, dictionary relied single 

character encoding method exploits a 4-bit code allocation dictionary (CAD) for allocating 

codewords for input series. The entire performance of BR-BWT method is depicted in Fig. 1.  

 

 

Fig. 1 Overall Process of Proposed BR-BWT model 

The exclusive feature of BR-BWT approach is that it uses 4-bit codewords for all characters. 

The BR-BWT model requires a lower 𝐶𝑏𝑖𝑡𝑠which stores compressed file as calculated in Eq. 

(1): 

𝐶𝑏𝑖𝑡𝑠  = ∑ 𝑁𝐶𝐴𝐷(𝑖)

𝑁

𝑖=1

                                                               (1) 

where 𝑁𝐶𝐴𝐷 shows the bit count and i represents the data instance. In specific, the bits required 

to save a character is around 4. Then, the bits which are essential for storing each character in 

BR-BWT model is estimated by Eq. (2). 
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𝐶𝐴𝐷𝑐ℎ_𝑎𝑣  =
𝐶𝑏𝑖𝑡𝑠

𝑁
≈ 4                                                           (2) 

Eq. (2) states that, the average count of bits required for storing a character results in effective 

compression operation.  

A. Bit Reduction Process using Codeword Allocation 

The complete process of BR-BWT compression as well as decompression task and the 

optimal CAD is provided. Initially, the BR-BWT method retains a BR-BWT that captures the 

codewords of 12 characters. As the BR-BWT model is deployed for WSN data is composed of 

arithmetic characters and dot characters. It is mainly applied for reducing the difficulty of a 

model.  The BR-BWT is predetermined, compression and decompression contains a BR-BWT 

apriori. After receiving the input sequence, the BR-BWT method applies BR-BWT and 

designates a codeword to them. Consequently, the final outcome of codewords are encoded 

and integrated for producing the compressed file with actual size which is then offered to 

receiver end.  

Here, newly deployed BR-BWT method applies symmetrical compression in which 

decompression task is an opposite function of compression process. Since the BR-BWT model 

contains similar BR-BWT as an encoding device, there is no requirement to send extra data 

with the compressed file for reformation task. At the initial stage, the BR-BWT method learns 

the compressed file with binary codewords. Here, compressed data is divided as 4 bits where 

the BR-BWT is applied for codeword mapping. Once the codewords are identified, decoded 

characters are integrated for reconstructing actual data. In the next stage, BWT is applied to 

further compress the data. 

B. BWT based Compression Process 

In BWT, the text is assumed as blocks. An effective lossless source code is said to be the 

sequence of source code that obtains optimal function for each source. The exact function is 

constrained with the following. Suppose the class of {𝑃𝜃: 𝜃 ∈ 𝛬} of stationary ergodic sources 

with definite source alphabet 𝒳. For all 𝜃 ∈ 𝛬, let 𝐻𝜃(𝑋𝑛) and 𝐻𝜃(𝒳) be nth order entropy 

and entropy rate of 𝑃𝜃which has been depicted as follows. 

𝐻𝜃(𝑋𝑛) = ∑ [

 

𝑢𝑛∈𝒳𝑛

− 𝑃𝜃(𝑢𝑛)log 𝑃𝜃(𝑢𝑛)]                                                   (3) 

and 

𝐻𝜃(𝒳) = lim
𝑛→∞

1

𝑛
𝐻𝜃(𝑋𝑛)                                                                        (4) 

for all 𝜃 ∈ 𝛬. The applied variable-rate lossless source coding principle for coding 𝑛-sequences 

from 𝒳 , for 𝑢𝑛 = (𝑢1 … , 𝑢𝑛) ∈ 𝒳𝑛 , let ℓ𝑛(𝑢𝑛)  defines the certain length applied in the 

lossless description of 𝑢𝑛  with decided coding principle. For all 𝜃𝐶𝛬, 𝛿𝑛(𝜃)  shows the 

essential redundancy for coding the samples from distribution 𝑃𝜃 . Thus, 𝛿𝑛(𝜃) demonstrates 

the difference over the target rate for each symbol 𝐸𝜃ℓ𝑛(𝑋𝑛)/𝑛 using block length-n code and 

better rate for all symbols 𝐻𝜃(𝑋𝑛)/𝑛 for coding 𝑛 − 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 from 𝑃𝜃; hence, 

𝛿𝑛(𝜃) =
1

𝑛
𝐸𝜃𝑙𝑛(𝑋𝑛) −

1

𝑛
𝐻𝜃(𝑋𝑛)                                                               (5) 

The sequence of coding principles are described by the redundancy functions {𝛿𝑛(⋅)}𝑛=1
∞ , 

showcases a periodical min-max universal lossless source code on Λ if δn(θ) → 0 for all θ ∈
Λ and rapid min-max universal lossless source code on 𝛬 if the convergence is same in 𝜃. 

These estimated bounds show the code function on sequence 𝑋𝑛  by means of “empirical 

entropy” of 𝑋𝑛 related to distribution method which is same as basic sources. 
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A work of unifilar, ergodic and finite-state-machine (FSM) modules are useful as provided. 

FSM is referred as definite alphabet 𝒳, a limited set of states 𝒮, |𝒮| conditional probability 

score {𝑝(⋅ |𝑠)}𝑠𝐶𝒮, and a next-state function 𝑓: 𝒮 × 𝒳 → 𝒮. It is offered with FSM data source 

as well as initial state𝑠0, a conditional probability of string 𝑢𝑛 = 𝑢1, … , 𝑢𝑛 ∈ 𝒳𝑛 with 𝑠0 that 

is expressed as, 

𝑃𝑟(𝑢𝑛|𝑠0) = ∏ 𝑝

𝑛

𝑖=1

(𝑢𝑖|𝑠𝑖−1)                                             (6) 

where 𝑠𝑖 = 𝑓(𝑠𝑖−1, 𝑢𝑖) for every 1 ≤ 𝑖 ≤ 𝑛. The FSM X sources, termed as FSM sources are 

defined as a subset of FSM sources in which the integer 𝑀  where 𝑖 ≥ 𝑀 , the 𝑀  symbols 

𝑢𝑖−𝛬𝐽+⊥
𝑖  estimate the state 𝑠𝑖  at time 𝑖. In FSMX sources, the set 𝒮 is meant to be minimal 

suffix set of strings from 𝒳∗ with the help of feature in which 𝑠 ∈ 𝑆and all 𝑢 ∈ 𝒳 in which 

𝑝(𝑢|𝑠) ≠ 0, the string 𝑠𝑢 contains an individual suffix in 𝒮. Therefore, for FSMX source, 

𝑓(𝑠𝑖−1, u𝑖) = 𝑠𝑢𝑓(𝑠𝑖−1𝑢𝑖) for all 𝑖 , where suf(𝑠𝑢) is a suffix of a string accomplished by 

applying a symbol 𝑢 for entire string 𝑠. 
FSMX sources were obtained from FSM sources using recent as well as previous condition 

(𝑠𝑖 = 𝑓(𝑠𝑖−1, 𝑢𝑖)). As a result, the drawbacks are limited, by using normalized FSMX sources, 

termed as finite-memory sources. For FSM, lower suffix set 𝑆 of strings from 𝒳∗ and integer 

𝑀 is represented as, 

𝑃𝑟(𝑢𝑛|𝑢−(𝑀−1)
0 ) = ∏ 𝑝

𝑛

𝑖=1

(𝑢𝑖|𝑠𝑖−1)                                                  (7) 

and 𝑠𝑖−1 = 𝑠𝑢𝑓(𝑢𝑖−𝑀, 𝑢𝑖−(𝑀−1)} … , 𝑢𝑖−1) , for every 𝑖. The state variables {𝑠𝑖} are defined as 

variable-length strings. For stationary, the symbols 𝑋−𝑀+1, 𝑋−𝑀+2, … , 𝑋0 should to be attained 

from a stationary distribution on 𝒳𝑀 provided by FSM is defined as, 

𝑃𝑟(𝑢𝑛) = 𝑝(𝑢𝑀) ∏ 𝑝

𝑛

𝑖=𝑀+⊥

(𝑢𝑖|𝑠𝑖−⊥)                                      (8) 

where 𝑝(𝑢𝑀) implies the stationary distribution on 𝒳𝑀 promoted by FSM. 

The FSM states that, there is no requirement of contexts with length 𝑘 to hold conventional 

𝑘 symbols for a data string. The improved |𝒮| scores are not arranged while |𝒮| is modified by 

length of previous data applied in conditional distributions. The effective maximization in |𝒮| 
results in performance degradation, since the convergence measures tends in Section V with 
|𝑆|.In this approach, 𝜃 = (𝑝(1|𝑠): 𝑠𝐶𝒮) describes the distribution 𝑃𝜃, and thus, 𝐾 = |𝒮| and 

𝛬𝐶ℝ𝐾 , with familiar (𝐾/2) log 𝑛/𝑛 + 𝑂(1/𝑛) . In general, 𝐾 = |𝑆|(|𝒳| − 1)  offers the 

number of parameters should be defined the conditional probabilities 𝑝(𝑢|𝑠) for every 𝑢 ∈ 𝒳 

and values of 𝑠 ∈ 𝒮 . The BWT is described as reversible block-sorting transform which 

depends upon a series of 𝑛 data for permuted data series of identical symbols and single integer 

in {1, …} 𝑛}. Let 

𝐵𝑊𝑇𝑛: 𝒳𝑛 → 𝒳𝑛 × {1, … , 𝑛}                                                   (9) 

When 𝑛-dimensional BWT function is provided below: 

𝐵𝑊𝑇𝑛
(−1)

: 𝒳𝑛 × {1, … , 𝑛} → 𝒳𝑛                                               (10) 

Where it is an inverse of 𝐵𝑊𝑇𝑛 . The sequence length 𝑛 is accomplished from a source 

argument with functional transcript that is limited as, 

(𝑣𝑛, 𝑢) = 𝐵𝑊𝑇(𝑢𝑛)𝑎𝑛𝑑𝐵𝑊𝑇(−1)(𝑣𝑛, 𝑢) = 𝑢𝑛.                                (11) 
The performance of 𝐵𝑊𝑇𝑢 and 𝐵𝑊𝑇ℕ represents the character and integer portions of BWT. 

The front BWT is processed by the development of 𝑛 cyclic shifts for original data string and 

sorting the cyclic shifts in lexicographical fashion. 
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3. RESULTS  

In order to investigate the performance of BR-BWT model, it is sampled on WSN datasets 

such as humidity as well as temperature dataset. With the application of newly developed 

models namely ALDC, LEC, SLZW, FELACS methods, the BR-BWT's function is associated 

interms of energy consumption and compression operation. The presented model is related with 

the classical compression approaches called as gzip, bzip2, Huffman as well as arithmetic 

coding. The proposed BR-BWT model has been simulated using Adruino board, sensors and 

Python Programming language. 

A. Dataset used 

SensorScope, the ecological observation WSN dataset has been applied. Firstly, temperature 

and humidity measures from 3 SensorScope were sampled: HES-SO Fish-Net Deployment, Le 

Gènèpi Deployment as well as LUCE deployment [19]. The size of a dataset may vary from 

12,652 to 64,913 instances. The deployment scenarios utilize a TinyNode node which 

comprises a TI MSP430 microcontroller, a Xemics XE1205 radio and a Sensirion SHT75 

sensor module. The relative humidity and temperature sensors are connected to a 14 bit analog 

to digital converter (ADC). The outcome of the ADC for raw relative humidity (raw_h) and 

raw temperature (raw_t) are represented by the resolutions of 12 bits and 14 bits 

correspondingly. The actual output raw_h and raw_t is transformed to compute h and t in 

percentage (%) and degree Celsius correspondingly. The dataset published on SensorScope 

deployments defines the physical measures h and t. Since the compression technique operates 

on raw_h and raw_t, the physical measures h and t are converted to raw_h and raw_t utilized 

the inverted versions of the conversion function earlier to data compression. The details of the 

dataset are provided in Table 1. 

 

Table 1 Dataset description 

Deployment name 
Node 

ID 

Symbolic 

name 

No. of 

samples 

Time Interval 

From day  To day 

LUCE 84 LU_84 64,913 23-Nov-2006    17-Dec-2006 

HES-SO FishNet 101 FN_101 12,652 09-Aug-2007    31-Aug-2007 

Le Gènèpi 20 LG_20 21,523 04-Sep-2007    03-Oct-2007 

 

B. Performance Measures 

A set of measures used to examine the performance of the proposed methods are given as 

follows. 

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑟𝑎𝑡𝑖𝑜 = (
𝑁𝑜. 𝑜𝑓𝑏𝑖𝑡𝑠𝑖𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑑𝑎𝑡𝑎

𝑁𝑜. 𝑜𝑓𝑏𝑖𝑡𝑠𝑖𝑛𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑑𝑎𝑡𝑎
)                               (12) 

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑓𝑎𝑐𝑡𝑜𝑟 = (
𝑁𝑜. 𝑜𝑓𝑏𝑖𝑡𝑠𝑖𝑛 𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑑𝑎𝑡𝑎

𝑁𝑜. 𝑜𝑓𝑏𝑖𝑡𝑠𝑖𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑑𝑎𝑡𝑎
)                            (13)  

𝑆𝑝𝑎𝑐𝑒𝑠𝑎𝑣𝑖𝑛𝑔𝑠 = 100 ∗ (1 −
𝑁𝑜. 𝑜𝑓𝑏𝑖𝑡𝑠𝑖𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑑𝑎𝑡𝑎

𝑁𝑜. 𝑜𝑓𝑏𝑖𝑡𝑠𝑖𝑛𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑑𝑎𝑡𝑎
)                     (14) 

𝑃𝐶𝑅 = 100 ∗ (1 −
𝑁𝑜. 𝑜𝑓𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑑𝑎𝑡𝑎

𝑁𝑜. 𝑜𝑓𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑑𝑎𝑡𝑎
)   (15) 

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =
𝑁𝑜. 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑖𝑛 𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑑𝑎𝑡𝑎

𝑁𝑜. 𝑜𝑓 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠 𝑖𝑛 𝑆𝑒𝑛𝑠𝑒𝑑 𝐷𝑎𝑡𝑎
               (16) 

𝑃𝑜𝑤𝑒𝑟 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 =  
1 − 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑏𝑖𝑡𝑠 
∗ 100                               (17) 
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C. Discussion 

Table 2 provides an analysis of the results by the BR-BWT model interms of different aspects. 

The table indicated that the presented BR-BWT model has achieved maximum compression 

efficiency. On the applied LU_84Temp, the BR-BWT model has compressed the dataset into 

a maximum extent with the minimum CR of 0.130375 and CF of 7.670202. On the given 

FN_101Temp, the BR-BWT method has compressed the dataset to a certain extent with the 

lower CR of 0.187275 and CF of 5.339738. On the provided LG_20Temp, the BR-BWT model 

has compressed the dataset into a higher extent with the least CR of 0.219614 and CF of 

4.553452. On the applied LU_84RH, the BR-BWT approach has compressed the dataset into 

a higher extent with the minimal CR of 0.183520 and CF of 5.449003. On the projected 

LFN_101RH, the BR-BWT model has compressed the dataset into a greater extent with the 

lesser CR of 0.237570 and CF of 4.209280. On the presented LG_20RH, the BR-BWT model 

has compressed the dataset into a certain extent with the lower CR of 0.258909 and CF of 

3.862363. 

 

Table 2 Result Analysis of BR-BWT on various WSN dataset in terms of Compressed Size, 

CR, CF 

Dataset 
Original Size 

(Bits) 

Compressed 

Size (Bits) 

Compression 

Ratio 

Compression 

Factor 

LU_84 Temp 3135824 408832 0.130375 7.670202 

FN_101 Temp 680368 127416 0.187275 5.339738 

LG_20 Temp 1043032 229064 0.219614 4.553452 

LU_84 RH 4096168 751728 0.183520 5.449003 

FN_101 RH 696704 165520 0.237570 4.209280 

LG_20 RH 1358872 351824 0.258909 3.862363 

 

Table 3 portrayed the packet size analysis of the BR-BWT model on the applied set of dataset. 

The proposed BR-BWT model has reached to a minimum number of compressed packets 

compared to original packet sizes. On the test LU_84 Temp dataset, the BR-BWT model 

compresses the original packet size of 13516 bits into 1762 bits. On the test FN_101 Temp 

dataset, the BR-BWT method compresses the actual packet size of 2932 bits into 549 bits. On 

the test LG_20 Temp dataset, the BR-BWT approach compresses the original packet size of 

4495 bits into 987 bits. On the test LU_84 RH dataset, the BR-BWT scheme compresses the 

real packet size of 17655 bits into 3240 bits. On the test FN_101 RH dataset, the BR-BWT 

technique compresses the actual packet size of 3003 bits into 713 bits. On the test LG_20 RH 

dataset, the BR-BWT approach compresses the original packet size of 5857 bits into 1516 bits. 

 

Table 3 Result Analysis of BR-BWT on various WSN dataset in terms of Packet Size 

Dataset Original packet size (bits) Compressed packet size (bits) 

LU_84 Temp 13516.48276 1762.20689 

FN_101 Temp 2932.655172 549.206897 

LG_20 Temp 4495.827586 987.344828 

LU_84 RH 17655.89655 3240.20689 

FN_101 RH 3003.103448 713.448276 
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LG_20 RH 5857.206897 1516.48275 

 

Fig. 2 provides a comparison of SS offered by the BR-BWT model and recently presented 

methods. The table values indicated that the S-LZW model has exhibited ineffective 

compression efficiency and attained minimum SS. Next, the LEC model has shown better 

compression than S-LZW model by achieving slightly higher SS. Also, the ALDC and 

FELACS models have exhibited even higher compression efficiency by attaining closer SS. At 

the same time, the BCAT model has tried to show effective compression performance over the 

earlier models. However, the presented BR-BWT model has reached to a maximum SS on all 

the applied dataset. 

 

 

Fig. 2 Comparative analysis of BR-BWT models with recent methods in terms of Space 

savings 

Fig. 3 offers a comparison of SS provided by the BR-BWT method with the help of 

conventional compression technology. The table measures pointed that the Huffman method 

has showcased worst compression efficiency and accomplished lower SS. Besides, the 

Arithmetic model has implied moderate compression when compared to Huffman model by 

accomplishing better SS. Additionally, the Gzip and Rar methodologies have showcased 

gradual compression efficiency by achieving nearer SS. Meanwhile, the Bzip2 model has 

attempted to exhibit efficient compression performance over the previous methods. Thus, the 

proposed BR-BWT approach has accomplished greater SS on all the applied dataset. 
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Fig. 3 Comparative analysis of BR-BWT models with traditional compression algorithms in 

terms of Space savings 

Fig. 4 signifies a comparison of power saving offered by the BR-BWT method and newly 

projected models. The table values showed that the S-LZW model has showcased poor 

compression efficiency and reached lower power saving. Followed by, the LEC method has 

implied moderate compression when compared to S-LZW method by accomplishing maximum 

power saving. Furthermore, the ALDC and FELACS approaches have showed better 

compression efficiency by achieving closer power saving. Simultaneously, the BCAT model 

has attempted to exhibit productive compression performance than previous models. Therefore, 

the projected BR-BWT method has attained to a higher power saving on all the given dataset. 

 

 

Fig. 4 Comparative analysis of BR-BWT models with compression algorithms in terms of 

Power saving 

Fig. 5 provides a comparison of bit rate offered by the BR-BWT model and recently 

presented methods. The table values indicated that the S-LZW model has exhibited ineffective 

compression efficiency and attained maximum bit rate. Next, the LEC model has shown better 

compression than S-LZW model by achieving slightly lower bit rate. Also, the ALDC and 

FELACS models have exhibited even higher compression efficiency by attaining closer bit rate. 

At the same time, the BCAT model has tried to show effective compression performance over 

the earlier models with low bit rate. However, the presented BR-BWT model has reached to a 

minimum bit rate on all the applied dataset. 
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Fig. 5 Comparative analysis of BR-BWT models with existing methods in terms of Bit rate 

 

Table 4 Result Analysis of BR-BWT for Real Time Dataset in terms of various measures 

Dataset Original  Compressed CR CF SS 
Bit 

Rate 

Power 

savings 

Real Data 1 2224 1328 0.59712 1.67470 40.29 4.7770 65.88 

Real Data 2 1944 1480 0.76132 1.31351 23.87 6.0905 56.50 

Real Data 3 2168 1032 0.47601 2.10078 52.40 3.8081 72.80 

 

Table 4 investigates the results of the BR-BWT model on the real time dataset. On the applied 

real data 1, the proposed BR-BWT model compresses the 2224 bits into 1328 bits with the CR 

of 0.59712, CF of 1.67470, SS of 40.29%, bit rate of 4.777 and power saving of 65.88%. On 

the provided real data 2, the presented BR-BWT approach compresses the 1944 bits into 1480 

bits with the CR of 0.76132, CF of 1.31351, SS of 23.87%, bit rate of 6.0905 and power saving 

of 56.50%. On the given real data 3, the presented BR-BWT model compresses the 2168 bits 

into 1032 bits with the CR of 0.59712, CF of 1.47601, SS of 52.40%, bit rate of 3.8081 and 

power saving of 72.80%. 

 

4. CONCLUSIONS 

This study has established a novel Bit Reduction with Burrows Wheeler Transform named as 

BR-BWT based data compression model in WSN. The proposed BR-BWT technique has 

performed data encoding in 2 ways like bit reduction using codeword allocation as well as 

BWT based encoding task. At the initial stage, previous codeword allocation process is 

conducted to compute the codeword for each character present in the WSN data. Followed by, 

the BWT based compression process is performed to minimize the volume of data transmission. 

For performance validation of the BR-BWT technique, the actual WSN dataset is sampled and 

the final outcomes are defined under various factors. The experimental outcome stated the 

superior characteristics of the BR-BWT model compared to traditional and recently proposed 

models. In future, the performance of the proposed model can be improvised by the use of other 

dictionary based coding techniques. 
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