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Abstract – This article presents an evaluation of the optimal location and dimensioning of distributed 

generation in electrical energy distribution systems. For such evaluation, the Shuffled Frog-Leaping 

Algorithm has been considered. In the problem of optimal location and dimensioning, two objectives have 

been considered: the minimization of active losses and the improvement of the voltage profile. To compare 

the effectiveness of the implemented methods, IEEE-33 bus test distribution system is used. The correct 

location and dimensioning of the distributed generation allowed to substantially improve the network 

voltage profile and reduce losses for the test system. 
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1. INTRODUCTION 

Electric power systems around the world are evolving towards a scenario where the presence of generation 

units close to demand is increasingly common. This generation is currently known as distributed generation 

[1]. The reasons for this trend are the product of various international energy policies that support the 

connection of electricity generation based on alternative sources or on high-efficiency technologies [2], [3]. 

The main advantages of DG over centralized generation are low environmental impacts and low investment 

costs. Additionally, DG can help reduce electrical losses, alleviate congestion problems in transmission 

lines, expand the power profile, improve system constancy, then also reduce electricity costs for the final 

consumer. 

The optimal location & sizing of new DG units is influenced by technical and economic factors, including 

the increase in the price of energy at peak hours. In this case, the DG can deliver energy during these hours, 

making prices to consumers lower. There are many aspects that must be considered when conducting DG 

planning and operation studies (development of the current profile, minimization of losses, improvement of 

system reliability, etc.). Most planning studies include the ideal area and estimating of new conveyed age 

units. 

In the process of restructuring electrical systems worldwide, the criterion of considering the management of 

distribution networks as natural monopolies has been maintained. Traditional regulatory schemes such as 

cost of service regulation have been replaced by new performance-based regulatory schemes in which non-

discrimination and free access to networks is a fundamental pillar of the reform process. Unfortunately, an 

open access policy must be applied on a network that produces energy losses. Consequently, these losses 

must be transparently allocated between consumers and distributed generation. Electrical losses have a non-

linear behavior with respect to power flows and it is difficult to determine the responsibility of each power 

injection for the overall losses of the system. 

Given this situation, several and different loss allocation systems have remained projected in the literature, 

mainly referring to transmission systems [4]. However, few technical publications devoted to the allocation 
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of losses in distribution systems are observed taking into account the increasing penetration of distributed 

sources. 

Generally, circulation misfortunes have been considered as an extra burden then have been distributed 

proportionally among all consumers in the network, generally using average values. However, the presence 

of distributed generation dramatically changes the paradigm of loss allocation. The degree of penetration of 

the distributed energy sources can contribute globally to avoid losses or rather to increase them. 

In this sense, different methodologies have been proposed in the literature for the designation of dynamic 

misfortunes in circulation networks with appropriated age, basically divided into two groups. First, methods 

such as postage [5], MW-km [5] and proportional participation [6] [7] have been proposed based on an 

arbitrary allocation between generators and consumers, typically 50: 50%. Recently, a modification to the 

proportional participation method [8] has been proposed based on the allocation of 100% of network losses 

to consumers, neglecting the effect of generators. Subsequently, the effect of the generators is calculated and 

the losses produced or avoided are assigned to the generators as a penalty or incentive in the use of the 

network. 

 

Secondly, marginal methods have been proposed [9] [10 [11] that have been widely discussed in 

transmission systems in order to send efficiency signals to economic agents. As a result, it seeks to 

compensate those agents that contribute to the reduction of losses (losses avoided) and to penalize those 

agents that produce increases in the overall losses of the system. 

In order to establish a general evaluation of the impact of each allocation methodology. 

 

Metaheuristic techniques provides the path to change the procedures of subsidiary heuristics to achieve 

superior solutions efficiently, employing successful search strategies and bioinspired algorithms. Some of 

the most commonly used mono-objective techniques are: artificial bee colony algorithm [12], ant colony 

optimization [13], genetic algorithm [14], particle swarm optimization [15], simulated annealing [16], Tabu 

search [17] and immune algorithms [18]. The objective of this paper is to contribute to the discussion on the 

effectiveness of metaheuristic method for the optimal location and dimensioning of DG. To this end, 

Shuffled Frog-Leaping Algorithm (SFLA) has been implemented and to test the efficiency of this method, 

different tests have been carried out on an IEEE-33 bus distribution test system. Section two describes the 

implementation of proposed approach. Results are presented in section three trailed by the conclusive 

remarks in the section four. 

2. PROPOSED METHODOLOGY 

A. Problem Formulation 

The optimal location then dimensioning problem of DG remains formulated for two objectives: the 

maximization of net social benefit and the maximization of profit for the owner of the DG. The local 

marginal prices obtained from the optimal power flow solution remain utilized as pointers to distinguish the 

applicant bars where to locate the DG. 

 

B. Maximization of Net Social Benefit 

The optimal location then sizing problem of DG addressed from the network operator's point of view is to 

maximize the net social benefit subject to network constraints. Net social benefit is characterized as the 

absolute advantage of shoppers less the all-out expense of creation [19] and can be represented by equation 

(1). 

max [∑[𝐹𝑖(𝑃𝑑𝑖)]

𝑛𝑑

𝑖=1

−∑[𝐺𝑖(𝑃𝑔𝑖)]

𝑛𝑔

𝑖=1

] 

(1) 

𝐹𝑖(𝑃𝑑𝑖) = 𝑎𝐷𝑖 + 𝑏𝐷𝑖𝑃𝑑𝑖 − 𝑐𝐷𝑖(𝑃𝑑𝑖)
2          (2) 
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𝐺𝑖(𝑃𝑔𝑖) = 𝑎𝐺𝑖 + 𝑏𝐺𝑖𝑃𝑔𝑖 − 𝑐𝑔𝑖(𝑃𝑔𝑖)
2
          (3) 

Where, 

𝑛𝑑 : Number of loading bars; 

𝑛𝑔 : Number of generators; 

𝑃𝑑𝑖 : Power demanded in bar 𝑖; 

𝑃𝑔𝑖 : Power delivered by generator 𝑖; 

𝐹𝑖(𝑃𝑑𝑖) : Demand benefit function 𝑖; 

𝐺𝑖(𝑃𝑔𝑖) : Generator 𝑖 benefit function; 

𝑎𝐷𝑖, 𝑎𝐺𝑖 : Independent coefficients of the benefit functions of demand and generator 𝑖 respectively. 

𝑏𝐷𝑖, 𝑏𝐺𝑖 : First order coefficients of the profit functions of demand and generator 𝑖 respectively. 

𝑐𝐷𝑖, 𝑐𝐺𝑖: Second order coefficients of the demand benefit function and the generator 𝑖 respectively. 

The maximization problem described in (1) can be formulated as a minimization problem by changing the 

sign of the objective function as shown in (4). 

min[∑ [𝐺𝑖(𝑃𝑔𝑖)]
𝑛𝑔
𝑖=1 − ∑ [𝐹𝑖(𝑃𝑑𝑖)]

𝑛𝑑
𝑖=1 ]      (4) 

This problem remains subject towards equality & inequality restrictions. The equality constraints correspond 

to the active then reactive power balance equations for each of the bars in the system as shown in (5) and 

(6). 

𝑃𝑔𝑖 − 𝑃𝑑𝑖 − 𝑃(𝑉, 𝜃) = 0    (5) 

𝑄𝑔𝑖 − 𝑄𝑑𝑖 − 𝑄(𝑉, 𝜃) = 0  (6) 

Where, 

𝑃𝑔𝑖 : Active power generated in bar 𝑖; 

𝑄𝑔𝑖 : Reactive power generated in bar 𝑖; 

𝑃𝑑𝑖 : Active power demanded in bar 𝑖; 

𝑄𝑑𝑖 : Reactive power demanded in bar 𝑖; 

𝑃(𝑉, 𝜃) : Active power calculated on bar 𝑖; 

𝑄(𝑉, 𝜃) : Reactive power calculated in bar 𝑖. 

 

The expressions for the injections of active & reactive power calculated according to the angles & voltages 

of the network, are given according to (4) and (5). 

𝑃𝑖(𝑉, 𝜃) = 𝑉𝑖 ∑ [𝑉𝑗{𝑔𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) − 𝑏𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗)}]
𝑛𝑏
𝑗=1     (7) 

𝑄𝑖(𝑉, 𝜃) = 𝑉𝑖 ∑ [𝑉𝑗{𝑔𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗) − 𝑏𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗)}]
𝑛𝑏
𝑗=1          (8) 

Where: 

𝑛𝑏 : Number of buses in the system; 

𝑉𝑖 : Magnitude of voltage at bar 𝑖; 

𝜃𝑖 : Angle in the bar 𝑖; 

𝑔𝑖𝑗 : Conductance of line 𝑖𝑗; 
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𝑏𝑖𝑗 : Susceptance of the 𝑖𝑗 line. 

The inequality constraints are the generation limits (active & reactive power), the power flow limits on the 

lines then the voltage limits on the nodes. These restrictions are represented in equations (9) to (13). 

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖 ≤ 𝑃𝑔𝑖

𝑚𝑎𝑥      (9) 

𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖 ≤ 𝑄𝑔𝑖

𝑚𝑎𝑥     (10) 

𝑆𝑖𝑗 ≤ 𝑆𝑖𝑗
𝑚𝑎𝑥   (11) 

𝑆𝑗𝑖 ≤ 𝑆𝑗𝑖
𝑚𝑎𝑥    (12) 

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥   (13) 

The model described by equations (4) - (13) corresponds to a mixed, highly dimensional and non-convex 

integer nonlinear programming problem that presents multiple local optimums, which justifies the use of 

proposed Shuffled Frog-Leaping Algorithm (SFLA) aimed at its solution in this paper. Below is a brief 

description of the SFLA technique. 

 

C. Shuffled Frog-Leaping Algorithm (SFLA) 

This optimization technique projected by Muzaffar Eusuff & Kevin Lansey in 2003, consists of modeling 

the behavior of groups of frogs, in particular the way in which these amphibians search for food (insects) 

[20]. 

 

The SFLA algorithm has jump rules to what will first be a local search for each individual frog, and 

combination rules for the different groups of frogs (leaves) for a global search [21] [22]; Each leap of the 

frog produces a change of position within the solution space and is intended to approach the best possible. 

The steps of the algorithm are: 

• Step 1: Initial information is provided, such as the number of jumps per frog 𝑠, the number of frogs 

per leaf 𝑚, the number of variables in the 𝑁𝑉 problem, the allowed search space 𝐴𝑆𝑆, the number 

of leaves 𝑘𝑙 and for completion the number of iterations. 

• Step 2: The iterations are started, a random population of frog jumps is generated and evaluated in 

the cost function to determine their fitness and thus order them in descending order. 

• Step 3: A distribution of leapfrogging (partition) is made among the leaves, in such a way that the 

first frog jump is assigned to the first leaf, the second jump to the second leaf and so on. 

• Step 4: The best & worst frog leaps (best fitness value and worst fitness value) of each leaf are 

identified, as well as the frog leap with the best overall fitness. 

• Step 5: Update the worst frog jumps using the best jumps on each leaf, such that: 

𝑤𝑠𝐹𝑚
𝑘+1 = 𝑤𝑠𝐹𝑚

𝑘 + 𝑟𝑘(𝑏𝑠𝐹𝑚
𝑘 − 𝑤𝑠𝐹𝑚

𝑘)     (14) 

Where 𝑘 is the current generation of population, 𝑤𝑠𝐹 is the worst frog, 𝑏𝑠𝐹 is the best frog and the 

corresponding leaf 𝑚. The best frogs on each leaf are updated with the best global frog. 

𝑏𝑠𝐹𝑚
𝑘+1 = 𝑏𝑠𝐿𝐹𝑘 + 𝑟𝑘(𝑏𝑠𝐺𝐹𝑘 − 𝑏𝑠𝐿𝐹𝑘)   (15) 

Where 𝑏𝑠𝐿𝐹 is the best local frog jump and 𝑏𝑠𝐺𝐹 is the best global frog jump. 

• Step 6: A leaf combination is performed (reassignment of leaf jumps). 

• Step 7: The completion criteria is reviewed, if it is met, the results are presented and the program 

ends; if not met, return to Step 2 [20]. 
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3. SIMULATION RESULTS 

The graphs below represent the results obtained: 

 
Figure 1: Active power loss comparison for DG (Type-1, Type-2) & without DG placement 

 

 
Figure 2: Reactive power loss comparison for DG (Type-1, Type-2) and without DG placement 

 

 

Figure 3: Voltage profile for DG (Type-1, Type-2) and without DG placement 
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Figure 4: Bar graph for active and reactive power loss minimization with DG (Type-1, Type-2) and 

without DG placement 

Table 1: Comparative results 

 

4. CONCLUSION 

In this paper, DG allocation is accomplished using a metaheuristic optimization algorithm, i.e. Shuffled 

Frog-Leaping Algorithm. The outcome of proposed approach clearly shows that the minimization of active 

power loss is done for the radial distribution network. One more advantage of this approach is that it 

increases the voltage at weak buses which defines the optimal size and location of distribution generation 

unit. 

In a later work, other aspects may be included in the model, such as variability in demand, investment costs, 

and geographic or environmental restrictions imposed by certain DG technologies. 
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