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Abstract 

The domatic graph number is discussed in this chapter.  Domatic was the word from the terms 

‘Dominance’ and ‘Chromatic’ coined. Found domatic numbers for different type of graphs. 

 

1. Introduction 

Graph Theory was developed in 1736 by Euler as a generalisation of the to the  Koniberg  bridges’ 

famous problem solution..  Graph dominance has been thoroughly researched in the graph theory 

division.  Berge in 1958 and Ore in 1962 formalised dominance as a theoretical field in graph theory.  

Ore was characterized by minimal dominant sets.  Historically, from chess came the first domination – 

type issues.  Several chess players were interested in the minimum number of queens in the 1850s, so 

that any square on the chess board includes either a queen (remember that a queen can move any number 

of squares on the chess board horizontally, vertically, or diagonally). 

Definition: 4.1   

                       A D-partition is a V(G) partition into a finite number of subsets.  In every subset other 

than its own, each point in a subset is adjacent to at least one point in each subset.  

Definition: 4.2  

                      A D-partition of G is a partition of V(G) into a finite number of subsets.  Each point in a 

subset in any sub-set other than its own is adjacent to at least one point in each sub-set.   

Proposition: 4.3 

                         For every graph G, ↁ(G) ≤ ᵟ(G) + 1. 

Proof:  

            If the domatic numbr of a graph is k , then every point in a dominating set of the  

partition is adjacent to atleast one point in each of other k - 1 dominating sets in the partition.  In other 

words, each point must be adjacent to at least k-1 points, one in each dominant subset of the order k D- 

partition.  This implies ᵟ(G)  ≥  k - 1. 

Then ᵟ(G)  ≥  ↁ(G) - 1.  Therefore ↁ(G)  ≤  ᵟ(G) + 1. 

Definition: 4.4  

                   A graph G is domatically full if ↁ(G)  =  ᵟ(G ) + 1. 

Example: 

                 For any tree T, we have ↁ(T) = ᵟ(G) + 1 = 2.  Therefore any tree is domatically full. 

Proposition: 4.5 

(a) ↁ(Kn) = n; ↁ(Kn*)  = 1 

(b) ↁ(Kn + G)  =  n + ↁ(G). 

(c) (ore) ↁ(G) ≥ 2 if and only if G has no isolated points. 

(d) For any tree T with n ≥ 2 points ↁ(T) = 2. 
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(e) For any n ≥ 3, ↁ(C3n) = 3, ↁ(C3n+1) = ↁ(C3n+2) = 2. 

(f) For any 2 ≤ r ≤ s, ↁ(Kr,s) = r. 

 

Proof:  

In the graph Kn, each  point is adjacent to all other points.  Then each point is a dominating set.  There 

are n dominating sets.  That is ↁ(Kn) = n. In Kn*, we have n-isolated points.  We have only one 

dominating set. 

Therefore ↁ(Kn*) = 1. 

(a) In the join (Kn + G) of two graphs, every point in Kn is adjacent to every point of the graph G.  Then 

each point in Kn is a dominating set.  By the definition of joint of two graphs, each dominating set of G 

is also a dominating set of Kn + G.  The maximum number of dominating set in G is ↁ(G).  Therefore 

the maximum number of dominating set in Kn + G is n + ↁ(G).  Hence ↁ(Kn + G) = n + ↁ(G). 

(b) By a theorem , if there is a set  S of  minimal dominating set of graph without isolated points, then V 

- S is also a dominating set.  Therefore G has atleast two dominating sets.   

Hence ↁ(G) ≥ 2. 

Conversely, suppose ↁ(G) ≥ 2..  Suppose G has isolated points then G has only one dominating set.  

That is ↁ(G) = 1, a contradiction.  Therefore, G has no isolated points.   

(c)Since T has no isolated points, by proposition 4.5(c) 

ↁ(T) ≥ 2.                                                                              (1) 

For every graph G, ↁ(G) ≤ ᵟ(G) + 1 

For a tree T, ᵟ(T) = 1 

Then ↁ(T) ≤ 2.                                                                       (2)                                                                                                                                                 

From (1) and (2), we get ↁ(T) = 2.    

(d)For any cycle Cn, ↁ(Cn) ≤ δ +1 = 2 + 1 = 3. 

Consider C3n.  Let 1,2,……………3n denote the points of C3n. 

D1 = {1,4,7,……………..,3n-2},  

D2 = {2,5,8,…………..,3n-1} and 

D3 = {3,6,9,…………….3n} are dominating sets.  Hence ↁ(C3n) = 3.   

Next we prove that ↁ(C3n+1) = ↁ(C3n+2). 

Consider C3n+1.  Each minimum dominating set consists of  

n + 1 points.  C3n + 1 has at most two dominating sets. 

Therefore ↁ(C3n + 2) = 2. 

(e) Let V = V1  V2 be the bipartition of V, and │V1│ = r, │V2│ = s and 2 ≤ r ≤ s. Each dominating set 

consists of one point from V1 and another point from V2.  Hence each dominating set consists of at least 

two points.  The maximum number of dominating sets in Kr,s is r.  Therefore ↁ(Kr,s) =  r. 

Remark:   

             ↁ(K1,1) = 2. It does not satisfy ↁ(Kr,S) = 2 ≠ 1 = r  

if r = s = 1. 
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Proposition: 4.6  

                For every graph G having n points,  

ↁ(G) + ↁ(G*) ≤ n + 1. 

Proof:  

         By proposition 4.3, ↁ(G) ≤ ᵟ(G) + 1                     (1)                               

and ↁ(G) ≤ ᵟ(G) + 1 ≤ ∆(G*) + 1                                  (2)                                                                                                  

Therefore ↁ(G) + ↁ(G*) ≤ ᵟ(G) + ∆(G*) + 2  

                                       = ᵟ(G) + n- 1 - ᵟ(G) + 2  =  n + 1 

    ↁ(G)  +  ↁ(G*)  ≤  n  + 1. 

Theorem 4.7 

 Let G have n points, then ↁ(G) + ↁ(G*) = n + 1 if and only if G = Kn or Kn* 

Proof:  

           Suppose G = Kn or Kn*.  Then ↁ(Kn) = n, ↁ(Kn*) = 1 

If G = Kn, then ↁ(Kn) + ↁ(Kn*) =  n+ 1. 

If G = Kn*, then ↁ(Kn) + ↁ(Kn*) = ↁ(Kn*) + ↁ(Kn**) = 1 + n.Conversely, suppose ↁ(G) + ↁ(G*) = 

n + 1, we have to prove that, G = Kn or Kn*. 

Suppose, contrary to the assertion that G ≠ Kn or Kn* have n points and ↁ(G) + ↁ(G*) = n + 1. 

Case: (i)   

            If ᵟ(G) = 0, then ↁ(G) = 1. 

G has an isolated point and G has a point u of degree n-1.  Hence G* = K1 + F, where F has n - 1 points 

and F ≠ Kn-1, otherwise G*  = Kn which is not possible as G ≠ Kn which is not possible as G ≠ Kn or Kn*. 

As F is not complete graph, ↁ(F) < n - 1 

ↁ(G) + ↁ(G*) = ↁ(G) + ↁ(K1 + F) 

      = ↁ(G) + 1 + ↁ(F)     since ↁ(K1 + F) = 1 + ↁ(F) 

      = 1 + 1 + ↁ(F)           since ↁ(G) = 1 

            = 2 + ↁ(F) < 2 + n - 1. 

ↁ(G) + ↁ(G*)< n - 1, a contradiction. 

Case: (ii)   

               0 < ᵟ(G) < n / 2                                                     (1) 

By assumption, ↁ(G*) + ↁ(G) = n + 1 - ↁ(G)                                 

                                    ≥ (n + 1) - ᵟ(G) + 1, by proposition 4.3 

Therefore, ↁ(G*) ≥ n - ᵟ(G) 

If all dominating sets in maximum D-partition of G* have at least two points,  

Then n ≥ 2ↁ(G*) ≥ 2(n - ᵟ(G)) = 2n - 2ᵟ(G)                    by (2) 

     > 2n - n                   

(Since 2 ᵟ(G) < n, -2ᵟ(G) > -n)                

   n > n. 

This is a contradiction. 

Hence some point v dominates G*. 



                                                                                         European Journal of Molecular & Clinical Medicine 

                                                                               ISSN 2515-8260     Volume 07, Issue 11, 2020 

 

 7754  
 

Therefore, degG(v) = n-1 and degG(v) = 0. 

Hence ᵟ(G) = 0. 

This is contradiction to (1) 

Case: (iii)   

          n / 2 ≤ ᵟ(G) < n -1                (3)                                           

In this case, since for every graph of n points,  

ᵟ(G) +  ᵟ(G*) ≤ n - 1 

  ᵟ(G) ≤ n – 1 -  ᵟ(G) 

         ≤ n – 1 - (n/2) 

          ≤ (n/2) -1  by (3) 

If ᵟ(G*) = 0, apply case(i) to G, otherwise apply case(ii) to G*. 

Hence proved the statement . 

 

Theorem: 4.8 

 For every graph G with n points, ↁ(G) + ƴG) ≤ n + 1, with equality if and only if G = Kn or 

Kn*. 

Proof: 

 If G = Kn, ↁ(G) = n and  ƴ(G) = 1. 

If G = Kn*, then ↁ(G) = 1 and ƴ(G) = n. 

If G = Kn or Kn*, then ↁ(G) + ƴ(G) = n + 1. 

If ↁ(G) + ƴ(G) = n + 1, we have to prove that G = Kn or Kn* 

If G has n points and G ≠ Kn or Kn*, then we shall prove that  

ↁ(G) + ƴ(G) < n + 1. 

If G has n points and maximum degree ∆, then ƴ(G) ≤  n - ∆(G) 

Hence ƴ(G) ≤ n - ᵟ(G)                                          (1)                                                                  

Since ᵟ(G) ≤ ∆(G), -∆(G) ≤ -ᵟ(G) 

We claim that this latter inequality or ↁ(G) ≤ ᵟ(G) + 1 is strict       (2) 

That is, ƴ(G) = n - ᵟ(G) and ᵟ(G) = ↁ(G) – 1. 

Suppose not, then γ = n – δ = n - (ↁ(G) -1)      Since ↁ(G) = ᵟ(G)+1 

                             γ = n - ↁ(G) + 1 

By definition of ƴ(G) and ↁ(G), we have 

  ↁ(G) ≤ n/ ƴ(G) 

  ↁ(G) ≤ n/(n - ↁ(G) + 1)            by (3) 

  ↁ(G) (n-ↁ(G)+1) ≤n.. 

             ↁ(G)n - (ↁ(G))
2 

+ ↁ(G) - n  ≤ 0 

             ↁ(G)(n - ↁ(G)) - (n - ↁ(G)) ≤ 0 

           (ↁ(G) - 1) (n - ↁ(G)) ≤ 0                                      (4)                                                

ↁ(G) ≥ 1, n ≥ ↁ(G) this implies that ↁ(G) – 1 ≥ 0,  

n – ↁ(G) ≥ 0. 
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 (ↁ(G) – 1) (n – ↁ(G)) ≥ 0  

This implies ↁ(G) – 1 = 0 or n – ↁ(G) = 0 

This implies n = ↁ(G) or ↁ(G) = 1. 

If n = ↁ(G), then G = Kn. If ↁ(G) = 1, then G has an isolated point v. 

As G ≠ Kn*, we have, G – v ≠ Kn-1.  This implies that ƴ(G-v) ≤  n - 1 and ƴ(G) < n. 

In this case, since δ = 0, the inequality ƴ(G) ≤  n - ᵟ(G) is strict.  Thus one of the inequalities ƴ(G)  ≤  n - 

ᵟ(G) or ↁ(G) ≤ ᵟ(G) + 1 is strict implies that ƴ(G)  +  ↁ(G) < n-  ᵟ(G) +  ᵟ(G) + 1 = n + 1.  Hence ↁ(G) 

+ ƴ(G) ≤ n + 1. 
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