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Abstract-   Eigenvalue analysis of electromagnetic wave propagation for circular domain 

with and without the presence of the crack is done. Combination of triangular and 

quadrilateral edge elements are used to discretize the circular domain. Conversion 

algorithm is used to convert the nodal element data to edge element data. We compared the 

results of both the domains obtained with edge element along with the analytical and nodal 

element values. Convergence study is also performed to know the effectiveness of both 

lower and higher order edge elements for normal and cracked circular domains. For the 

cracked circular domain, nodal elements fail to capture the singular eigenvalue which is 

well captured by the edge element. 
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I. INTRODUCTION 

Finite element method (FEM) has been used to solve electromagnetic problems. These problems 

include the eigenvalue analysis of electromagnetic domains [1-3]. In order to implement the 

FEM technique, the domain has to be discretized with either nodal or edge elements. But the 

following drawbacks limits the application of nodal based FEM in electromagnetic analysis [4-

13]:   

   1. Due to improper continuity condition at the material interfaces occurrence of spurious 

solutions in eigenvalue problems.   

    2. Nodal based elements fails to capture singular eigenvalues in the domains where the sharp 

corners and edges are present. 

    3. Due to nodal continuity requirement, these elements cannot give direct solutions in terms of 

electric and magnetic field variables. We have to follow potential formulations. 

    4. Due to the requirement of tangential continuity and normal discontinuity across material 

interfaces for vector fields, special type of elements are required. 
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 When edge elements are used in FEM these drawbacks can be avoided. These elements are 

constructed by curl and divergence conforming spaces. Whitney introduced these elements in the 

field of FEM in electromagnetics. In this element [4-17] electric fields are along the edge of the 

element satisfying required tangential continuity. 
 

The rest of the paper is organized as follows. Discussion about the conversion algorithm used to 
convert nodal information of finite element to edge element is placed in section II. In section-III 
we presents the eigenvalues for the circular domain with and without the presence of crack for 
both lower and higher order edge elements. We also performs convergence study of the lower 
order and higher order of combination of triangular and quadrilateral edge elements. Concluding 
remarks are given in section IV. 

II. CONVERSION OF NODAL DATA TO EDGE DATA 

In nodal based FEM each element is formed with the nodes. But in edge based FEM each 

element is formed by connecting the edges. Each edge of the edge element is formed by joining 

the two nodes of the element. In FEM implementation edge information and edge connectivity 

data are required. But most of the available mesh generator are designed for nodal elements. So, 

a separate conversion algorithm is required which converts the nodal information of the element 

to edge information.  

In this conversion algorithm the outer loop runs over total number of discretized elements. The 

inner most loop runs over the total number of edges of each element.  Inside the  inner most loop, 

a subroutine supplies the two end nodes based on local nodal connectivity and local edge 

connectivity of the element to form new edge. With the help of nodeedge array checking is 

performed whether any edge is already assigned between the current local end nodes (starting 

and end nodes). This nodeedge array stores the global edge number and its corresponding other 

end node in odd columns and even columns respectively. If no edge is found then existing last 

global edge number is incremented by 1. This number is assigned to current local edge and 

updated in the edge connectivity array. Then the loop runs for the next local edge. This process 

continues for all the local edges and then jump to the element loop for next element. Along with 

the edge data this algorithm stores the directional information of the edges and number of 

connecting edges with each global node of the finite elements domain. 

 

                                          III. NUMERICAL ANALYSIS AND RESULTS 

3.1 Eigen Analysis 

The governing differential equation for harmonic excitation with no external load condition ( 

current density is zero) can be given as [3]  

                                  2
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Where 0k
c

=  is the wave number in vacuum,   is the excitation frequency (rad/sec), 

0 0

1c
 

=  is the speed of light in vacuum (m/sec), E  is the electric field (v/m), 
0r  =  is 

the relative permeability and 
0r  =  is the relative permittivity and 

0  and 
0  are the 
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permittivity and permeability for vacuum respectively. The equation (1) is used to solve the 

eigenvalue problems for circular domains with crack and without crack. In order to validate the 

edge elements implemented, we have considered 2D eigenvalue problem from [18, 19].  We 

have assumed the properties 1.0r r = =  and on the surface of the domain conducting boundary 

condition ( 0 =E n ) is applied. Here n  is the normal vector to the surface of the domain. 

 

3.2    Circular domain with perfectly conducting surfaces 

 

In order to perform the modal analysis, a circular domain of unit radius with perfectly conducting 

surfaces is considered. We consider two different cases for meshing the domain. In one case we 

discretize the domain with 3-edge triangle (T3) and 4-edge quadrilateral (Q4) elements. Here we 

use uniform 30 x 70 meshes along  r   and   directions. In another case we mesh the domain 

with 8-edge triangular element (T8) and 12-edge quadrilateral element (Q12). In this case we use 

uniform 20 x 40 meshes along r   and   directions. Figure 1 shows the discretized domain with 

nodal triangular and quadrilateral elements. B6, B9 are the conventional 6-node triangular 

element and 9-node quadrilateral element respectively. This mesh data is converted to edge 

element data with the help of node to edge conversion algorithm. Triangular elements are used 

for meshing around the origin in a layer and the remaining domain with quadrilateral elements.                                               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Finite element mesh of circular domain   
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              Table -1 2

0k  on the circular domain (bracketed values shows the multiplicity)  

 

Analytical 
Nodal element Edge element 

(B6/B9) (T3/Q4) (T8/Q12) 

3.391122(2) 3.388839(2) 3.425702(2) 3.384698(2) 

9.329970(2) 9.317991(2) 9.529880(2) 9.329397(2) 

14.680392(1) 14.667718(1) 14.799790(1) 14.724344(1) 

17.652602(2) 17.607352(2) 18.346646(2) 17.662205(2) 

28.275806(2) 28.155200(2) 28.654137(2) 28.332827(2) 

28.419561(2) 28.372027(2) 30.104019(2) 28.343553(2) 

41.158640(2) 40.883369(2) 45.173345(2) 41.404574(2) 

44.970436(2) 44.839236(2) 45.556597(2) 44.974676(2) 

49.224256(1) 49.084169(1) 49.647942(1) 49.469042(1) 

56.272505(2) 55.722110(2) 60.581974(2) 56.272505(2) 

64.240225(2) 63.964270(2) 65.750854(2) 64.271152(2) 

Number of computed zeros 

- 320 709 829 

 
Table 1 show the eigenvalues of full circular domain discretized with the combination of 3-edge 
triangular and 4-edge quadrilateral elements (T3/Q4) and the combination of 8-edge triangular 
and 12-edge quadrilateral elements (T8/Q12) along with the number of computed zeros. We tried 
to compare edge element results along with the analytical results reported in [18, 19] and 
conventional nodal elements results from [20, 21]. For both the nodal elements and proposed 
elements results are in good match with the analytical results. 

 

3.3    Cracked circular domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the cracked circular domain of unit radius where the crack runs from the centre to the 

periphery of the domain as shown in Figure 2. The crack is modeled by using ‘double noding’ 

along the crack. We use 30 x 70 finite elements (T3/Q4) along the along  r   and   directions to 

discretize the domain in one case. In another case we use 20 x 40 T8/Q12 finite elements for 

Figure 2. Cracked circular domain 
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meshing. The nodal finite element information of the discretized domain is generated with the 

help of finite element mesh generator HyFem. Then by using the conversion algorithm nodal 

data is converted to edge element information.             

 

                                          Table -2 2

0k  on the cracked circular domain  

 

Analytical 
Nodal element Edge element 

(B6/B9) (T3/Q4) (T8/Q12) 

1.358390 - 1.363529 1.299520 

3.391122 4.391601 3.425756 3.384717 

6.059858 6.094458 6.146601 6.054111 

- 6.431327 - - 

9.329970 9.315878 9.529880 9.329397 

13.195056 13.170984 13.588555 13.201275 

Number of computed zeros 

- 913 759 1080 

 

Table 2 show the eigenvalues of cracked circular domain discretized with the T3/Q4 elements as 
well as T8/Q12 elements along with the number of computed zeros.  We compared the edge 
element results along with the analytical solutions and nodal element results. Edge based finite 
element method results are in good agreement with the analytical eigenvalues. But results 
obtained from nodal frame work have spurious nonzero eigenvalues of 6.4315878 and one 
singular eigenvalue is not predicted as shown in Table 2.  

3.4    Convergence study 

 

We performed the convergence analysis to understand the efficiency and performance of the edge 
elements (T3/Q4, T8/Q12). Here, T3 is the 3-edge triangular element and Q4 is the 4-edge 
quadrilateral element. In order to perform the convergence study, we have taken 7 different 
meshes for circular domain with perfectly conducting boundary without the presence of crack. For 
cracked circular domain with the conducting surface we have considered 5 different meshes. The 
percentage of error is plotted against the total number of degrees of freedom (dof) or total number 
of equations. This is to correlate the percentage of error with the computational cost. Fig. 3 and 
Fig. 4 show the convergence plots for the combination of triangular and quadrilateral elements of 
both lower and higher order elements for both the circular domains. Percentage of error is 
calculated by using the equation (2). 

                                 ( )
Numerical value Analytical value

Error % 100
Analytical value

−
=            (2) 

 

3.4.1    Combination of 3-edge triangular and 4-edge quadrilateral elements (T3/Q4) 

 

Full circular domain having crack (Figure 2) with conducting surfaces is discretized with T3/Q4 
elements. For 5 different meshes (96, 520, 750, 1200, 1600 elements) total no. of equations i.e. 
free degree of freedoms are 183, 1035, 1496, 2391 and 3201 respectively. Figure 3 shows 
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convergence plot for the first five eigen frequencies. It can be observed that percentage of error 
for all the five eigen frequencies lies below 12%. But as the mesh refinement increases percentage 
of error reduces to less than 2%.   

 

3.4.2    Combination of 8-edge triangular and 12-edge quadrilateral elements (T8/Q12) 

 

T8/Q12 elements are used to mesh the circular domain without crack (Figure 1) to perform the 
convergence analysis. Here the domain is having perfectly conducting surfaces. For different 
mesh sizes (50, 270, 400, 500, 600, 700, 800 elements) of the circular domain 380, 2040, 3120, 
3920, 4720, 5520 and 6320 are the total degrees of freedom respectively. Percentage of error is 
plotted against the total no. of equations and figure 4 shows the convergence study plot for the 
first five eigen frequencies of the circular domain. It can be interpreted that as the mesh 
refinement increases percentage of error with analytical value is decreasing. Moreover the 
percentage of for all the eigen frequencies lies below 2% for the finer mesh refinement.  

                                                          

                                                                                  IV. CONCLUSIONS 

 

In this work we compared nodal elements with edge elements while triangular and rectangular 

elements are combined for solving some electromagnetic eigenvalue problems. The edge 

elements yield accurate eigenvalues along with the correct multiplicity. But nodal elements fail 

to capture the singular eigenvalue and there is one spurious eigenvalue for cracked circular 

domain. These shortcomings are not present in edge elements. From the convergence study it can 

Figure 3. Convergence analysis of cracked 

circular domain discretized with 3-edge 

triangular and 4-edge quadrilateral 

elements. 

Figure 4. Convergence analysis of circular 

domain discretized with 8-edge triangular 

and 12-edge quadrilateral elements 
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be concluded that for finer mesh refinement percentage of error is decreasing and lies below 2%. 

Proposed combination of edge elements are performing better for both lower and higher order 

elements.  
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