Online ISSN: 2515-8260

A LOW POWER OPERATIONAL AMPLIFIER DESIGN USING 18NM FIN-FET TECHNOLOGY FOR BIOMEDICAL APPLICATIONS

Main Article Content

Hari Kishore Kakarla, Mukil Alagirisamy

Abstract

ABSTRACT Bioelectric impedances have been found to correlate with a number of biological phenomena in some tissues, organs, and cells. This has helped to advance several of today's bioelectric impedance applications, like Electrical Impedance Tomography (EIT), Electrical impedance spectroscopy (EIS). For calculating bioelectric impedance it is very important to design low power Analog Front end consisting of Op-amp and ADC. In this paper, a low supply voltage based FinFET operational amplifier and its characteristics are studied and designed by using Cadence 18nm FinFET technology. The standard characteristics of the opamp like gain, bandwidth, unity gain bandwidth product, settling time and so on are distinguished with the existing architectures. The suggested FinFET-based amplifiers are having a greater performance at a reduced voltage than conventional two-stage Op-amps. In this work, supply voltage is provided as 0.8V. The circuit consumes a power of 35 μW, provides a gain of 83 dB and unity gain repeat of 10 MHz with a phase edge of 70 degrees. The difference between the suggested architecture and standard two stage CMOS Op-amp shows that figure of Merit for proposed circuit is improved to 1.1pj.

Article Details