Online ISSN: 2515-8260

Next-generation tissue microarrays (ngTMA) in translational research

Main Article Content

Inti Zlobec, Guido Suter, Aurel Perren, Alessandro Lugli

Abstract

Over the last two decades, prognostic and predictive biomarker studies in clinical and translational research settings have become synonymous with tissue microarrays (TMAs). TMAs are essentially “tissue archives” created by repeated transfer of small tissue cores from formalin-fixed paraffin-embedded tissues (“donor” blocks) into empty paraffin blocks (“recipient” blocks). In this manner, more than 500 different tissue spots can be arrayed onto a single TMA. TMA applications include the investigation of morphology, protein and gene expression or chromosomal aberrations. These can be visualized using H&E stains, immunohistochemistry (IHC), fluorescence and chromogenic mRNA or miRNA in situ hybridization (ISH). Despite many advantages such as cost-effectiveness, conventional tissue microarraying has several major drawbacks: it is a laborious, time-consuming and does not allow for precise tissue regions/structures to be captured. For studies aiming to investigate specific histological regions (e.g. interface between tumor and stroma) or particular cell types, conventional TMAs fall short. Our Translational Research Unit at the Institute of Pathology, University of Bern has developed next-generation TMAs (ngTMAs). ngTMA represents a process of TMA consulting, followed by slide scanning and digital pathology, as well as rapid, precise and automated TMA construction. Briefly, consulting in all aspects of TMA design/construction is discussed including histopathology and statistical considerations. Next, case review is performed and the best slide and paraffin block for subsequent TMA annotation. The selected slides (H&E or other staining) of all cases are digitally scanned. Digital images of each slide are then uploaded onto the slide management platform

Article Details